首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution. Using a monospecific antisaposin D antibody that crossreacts with prosaposin but not with saposins A, B, or C, immunoblot experiments showed that both the central and peripheral nervous systems express unprocessed prosaposin and little saposin D. Using the antisaposin D antibodies, we demonstrated that prosaposin is abundant in almost all neurons of both the central and peripheral nervous systems, including autonomic nerves, as well as motor and sensory nerves. Immunoelectron microscopy using double staining with antisaposin D and anticathepsin D antibodies showed strong prosaposin immunoreactivity mainly in the lysosomal granules in the neurons in both the central and peripheral nervous systems. The expression of prosaposin mRNA, examined using in situ hybridization, was observed in these same neurons. Our results suggest that prosaposin is synthesized ubiquitously in neurons of both the central and peripheral nervous systems. Funding: This study was supported by the Ehime University INCS and in part by grants-in-aid for Scientific Research to S.M. (Exploratory Res. 19659380) from the Japan Society for the Promotion of Science and to AS (Priority Areas 18023029) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   

2.
Saposins are small, heat-stable glycoprotein activators of lysosomal glycosphingolipid hydrolases that derive from a single precursor, prosaposin, by proteolytic cleavage. Three of these saposins (B, C, and D) share common structural features including a lack of tryptophan, a single glycosylation sequence, the presence of three conserved disulfide bonds, and a common multiamphipathic helical bundle motif. Saposin A contains an additional glycosylation site and a single tryptophan. The oligosaccharides on saposins are not required for in vitro activation functions. Saposins A and C were produced in Escherichia coli to contain single tryptophans at various locations to serve as intrinsic fluorescence reporters, i.e. as topological probes, for interaction with phospholipid membranes. Maximum emission shifts, aqueous and solid quenching, and resonance energy transfer were quantified by fluorescence spectroscopy. Amphipathic helices at the amino- and carboxyl termini of saposins A and C were shown to insert into the lipid bilayer to about five carbon bond lengths. In comparison, the middle region of saposins A or C were either embedded in the bilayer or solvent-exposed, respectively. Conformational changes of saposin C induced by phosphatidylserine interaction suggested the reorientation of functional helical domains. Differential interaction models are proposed for the membrane-bound saposins A and C. By site-directed mutagenesis of saposin A and C, their membrane topological structures were correlated with their activation effects on acid beta-glucosidase. These findings show that proper orientation of the middle segment of saposin C to the outside of the membrane surface is critical for its specific and multivalent interaction with acid beta-glucosidase. Such membrane interactions and orientations of the saposins determine the proximity of their activation and/or binding sites to lysosomal hydrolases or lipoid substrates.  相似文献   

3.
Prosaposin is synthesized as a 53-kDa protein, post-translationally modified to a 65-kDa form and further glycosylated to a 70-kDa secretory product. The 65-kDa protein is associated to Golgi membranes and is targeted to lysosomes, where four smaller nonenzymatic saposins implicated in the hydrolysis of sphingolipids are generated by its partial proteolysis. The targeting of the 65-kDa protein to lysosomes is not mediated by the mannose 6-phosphate receptor. The Golgi apparatus appears to accomplish the molecular sorting of the 65-kDa prosaposin by decoding a signal from its amino acid backbone. This investigation deals with the characterization of the sequence involved in this process by deleting the saposin functional domains A, B, C, and D and the highly conserved N and C termini of prosaposin. The truncated cDNAs were subcloned into expression vectors and transfected to COS-7 cells. The destination of the mutated proteins was assessed by immunocytochemistry. Deletion of the C terminus did not interfere with the secretion of prosaposin but abolished its transport to lysosomes. Deletion of saposins and the N-terminal domain did not affect the lysosomal or secretory routing of prosaposin. A chimeric construct of albumin and the C terminus of prosaposin was not directed to lysosomes. However, albumin connected to the C terminus and one or more functional domains of prosaposin reached lysosomes, indicating that the C terminus and at least one saposin domain are required for this process. In summary, we are reporting a novel sequence involved in the targeting of prosaposin to lysosomes.  相似文献   

4.
A proteomics-based search for molecules interacting with caspase-14 identified prosaposin and epidermal mesotrypsin as candidates. Prosaposin is a precursor of four sphingolipid activator proteins (saposins A–D) that are essential for lysosomal hydrolysis of sphingolipids. Thus, we hypothesized that caspase-14 and mesotrypsin participate in processing of prosaposin. Because we identified a saposin A sequence as an interactor with these proteases, we prepared a specific antibody to saposin A and focused on saposin A-related physiological reactions. We found that mesotrypsin generated saposins A–D from prosaposin, and mature caspase-14 contributed to this process by activating mesotrypsinogen to mesotrypsin. Knockdown of these proteases markedly down-regulated saposin A synthesis in skin equivalent models. Saposin A was localized in granular cells, whereas prosaposin was present in the upper layer of human epidermis. The proximity ligation assay confirmed interaction between prosaposin, caspase-14, and mesotrypsin in the granular layer. Oil Red staining showed that the lipid envelope was significantly reduced in the cornified layer of skin from saposin A-deficient mice. Ultrastructural studies revealed severely disorganized cornified layer structure in both prosaposin- and saposin A-deficient mice. Overall, our results indicate that epidermal mesotrypsin and caspase-14 work cooperatively in prosaposin processing. We propose that they thereby contribute to permeability barrier formation in vivo.  相似文献   

5.
Prosaposin is a multifunctional protein with diverse functions. Intracellularly, prosaposin is a precursor of four sphingolipid activator proteins, saposins A to D, which are required for hydrolysis of sphingolipids by several lysosomal exohydrolases. Secreted prosaposin has been implicated as a neurotrophic, myelinotrophic, and myotrophic factor as well as a spermatogenic factor. It has also been implicated in fertilization. The human and the mouse prosaposin gene has a 9-bp exon (exon 8) that is alternatively spliced, resulting in an isoform with three extra amino acids, Gln-Asp-Gln, within the saposin B domain. Alternative splicing in the prosaposin gene is conserved from fish to humans, tissue specific, and regulated in the brain during development and nerve regeneration-degeneration processes. To elucidate the physiological role of alternative splicing, we have generated a mouse lacking exon 8 by homologous recombination. The exon 8 prosaposin mutant mice are healthy and fertile with no obvious phenotype. No changes were detected in prosaposin secretion or in accumulation and metabolism of gangliosides, sulfatides, neutral glycosphingolipids, neutral phospholipids, other neutral lipids, and ceramide. These data strongly indicate that the prosaposin variant containing the exon 8-encoded three amino acids is dispensable for normal mouse development and fertility as well as for prosaposin secretion and its lysosomal function, at least in the presence of the prosaposin variant missing the exon 8-encoded three amino acids.  相似文献   

6.
Saposins A and C are sphingolipid activator proteins required for the lysosomal breakdown of galactosylceramide and glucosylceramide, respectively. The saposins interact with lipids, leading to an enhanced accessibility of the lipid headgroups to their cognate hydrolases. We have determined the crystal structures of human saposins A and C to 2.0 Angstroms and 2.4 Angstroms, respectively, and both reveal the compact, monomeric saposin fold. We confirmed that these two proteins were monomeric in solution at pH 7.0 by analytical centrifugation. However, at pH 4.8, in the presence of the detergent C(8)E(5), saposin A assembled into dimers, while saposin C formed trimers. Saposin B was dimeric under all conditions tested. The self-association of the saposins is likely to be relevant to how these small proteins interact with lipids, membranes, and hydrolase enzymes.  相似文献   

7.
Although the Man-6-P-independent lysosomal sorting of prosaposin, a precursor of four saposins (A, B, C, and D) is not understood, a protein/lipid interaction is considered. Immunocytochemical analysis revealed that each single saposin linked to the C-terminus of prosaposin and to secretory albumin, drives the chimeric protein to lysosomes in COS-7 cells. Quantitative image analysis demonstrated that saposins are targeted with different efficiency (P<0.05) and in a less smooth manner than the precursor. Despite a very close homology, the charge distribution at the surface of 3D comparative models between saposins appeared different. Western blotting monitored prosaposin in cells also as a di- or trimeric form, whereas the chimeric saposins as monomeric. This implies that each amphipathic saposin-like motif may be a part of the overall structural requirements for binding of the precursor to the membrane lipids of transport vesicle. The crystal structure of saposin B demonstrating two dimeric units for lipid binding supports current findings.  相似文献   

8.
Saposins (A, B, C, and D) are small sphingolipid activator proteins that are derived by proteolytic processing of a common precursor, prosaposin. In the lysosomal sphingolipid degradation pathway, acid beta-glucosidase (GCase) requires saposin C for optimal in vitro and in vivo hydrolysis of glucocerebroside. The deficiency of prosaposin/saposins (PS-/-) in humans and mice leads to a decrease of GCase activity in selected tissues. Concordant decreases (>50%) of GCase protein and in vitro activity were detected in extracts of cultured fibroblasts and hepatocytes from PS-/- mice and human prosaposin-deficient fibroblasts. GCase RNA in the PS-/- cells was at wild-type levels. Compared with that in wild-type cells (t(1/2) >24 h), the GCase protein in the PS-/- cells had a faster disappearance rate (t(1/2) approximately 1 h in mouse and approximately 8 h in human) as determined by metabolic labeling and immunoprecipitation with anti-GCase antibodies. Treatment of PS-/- cells with leupeptin, an inhibitor of cysteine proteases, led to significant increases (approximately 2-fold) in GCase protein and in vitro activity. Loading saposin C to human PS-/- fibroblasts resulted in an enhancement of GCase protein and in vitro activity. Saposin D loading had no effect. These data indicate that saposin C is required for GCase resistance to proteolytic degradation in the cell. Thus, diminished in vivo GCase activity would be greater than expected only from the lack of GCase activation by saposin C. These results indicate a new property for saposin C, an anti-proteolytic protective function toward GCase.  相似文献   

9.
Saposins are small glycoproteins which are required for sphingolipid hydrolysis by lysosomal hydrolases. Each saposin (A, B, C, and D) stimulates a different enzymatic activity. A new simple HPLC method to determine the levels of saposins A, C, and D in tissue was developed. Tissues were homogenized in 20 vol of water, boiled, and centrifuged. The supernatant was lyophilized and redissolved in 5 ml of water. A 1.5-ml sample of the solution was applied to a reverse-phase HPLC column (C4 column) and eluted with an acetonitrile gradient. Most contaminants eluted from the column prior to the saposins, which were eluted later as a cluster of peaks. This cluster was collected and then analyzed by another HPLC system equipped with an AX-300 anion-exchange column using a NaCl gradient. Saposins D, A, and C eluted from the AX-300 column separately and in that order. Quantitation of the saposins was made by measuring the sizes of each peak. Standard curves made from pure saposins showed that quantification was linear over a range from 1 to 5 micrograms. Saposin B was measured by its stimulation activity on pure human liver GM1 ganglioside beta-galactosidase. Stimulation was linear up to 80 micrograms of saposin B. Application of this method to analysis of human tissues for their saposin content is presented.  相似文献   

10.
Sphingolipid hydrolase activator proteins and their precursors   总被引:3,自引:0,他引:3  
Activator proteins for sphingolipid hydrolases (saposins) are small acidic, heat-stable glycoproteins that stimulate the hydrolysis of sphingolipids by lysosomal enzymes. The molecular mass of each stimulator is about 10 kDa, but glycosylated forms of higher mass exist too. The distribution and developmental changes in two saposins and their precursor proteins were studied with the aid of monospecific antibodies against saposin-B and saposin-C. They show a wide distribution in rat organs and forms intermediate between saposin and prosaposin (the precursor protein containing four different saposin units) could be seen. The amount of saposin and the degree of processing from prosaposin are quite different in different tissues. The saposins are the dominant forms in spleen, lung, liver, and kidney, while skeletal muscle, heart, and brain contain mainly precursor forms. In human blood, leukocytes contain mainly saposin, while plasma contains mainly precursor forms and platelets show many forms. Their subcellular distribution was studied using rat liver. The saposins of approximately 20 kDa are dominant in the light mitochondrial, mitochondrial, and microsomal fractions, following the distribution of the activity of a lysosomal marker enzyme. The nuclear fraction exhibits bands corresponding to non-glycosylated saposin. The soluble fraction contained much precursor forms. A developmental study of rat brain showed that the concentration of saposin precursors increased with age.  相似文献   

11.
Saposins A, B, C and D are soluble, non-enzymatic proteins that interact with lysosomal membranes to activate the breakdown and transfer of glycosphingolipids. The mechanisms of hydrolase activation and lipid transfer by saposins remain unknown. We have used in situ atomic force microscopy (AFM) with simultaneous confocal fluorescence microscopy to investigate the interactions of saposins with lipid membranes. AFM images of the effect of saposins A, B and C on supported lipid bilayers showed a time and concentration-dependent nucleated spread of membrane transformation. Saposin B produced deep gaps that ultimately filled with granular material, while saposins A and C lead to localized areas of membrane that were reduced in height by approximately 1.5 nm. Fluorescence-labeled saposin C co-localized with the transformed areas of the bilayer, indicating stable binding to the membrane. Fluorescence resonance energy transfer confirmed a direct interaction between saposin C and lipid. Under certain conditions of membrane lipid composition and saposin concentration, extensive bilayer lipid removal was observed. We propose a multi-step mechanism that integrates the structural features and amphipathic properties of the saposin proteins.  相似文献   

12.
Secretion of sphingolipid hydrolase activator precursor, prosaposin   总被引:3,自引:0,他引:3  
Sphingolipid hydrolases are activated by activator proteins or saposins. The precursor protein has been expected from the studies on the cDNA for saposins. Here we demonstrate that prosaposin occurs in various kinds of human secretory fluids such as cerebrospinal fluid, semen, milk, pancreatic juice, and bile. However, mature type saposins were not detected in these fluids. In human milk the amount of prosaposin changed during the lactating period; it became high in concentration within a few days after delivery, decreased during the transitional milk lactating stage, and then increased again toward the mature milk lactating stage. Prosaposin was released from human platelets in response to stimulation by thrombin, but mature saposins were not. From the time course of the release of prosaposin induced by thrombin and from the fact that weak platelet agonists, ADP, epinephrine, and collagen, did not cause the release of prosaposin, prosaposin secretion from platelets seemed to be from lysosome like granules. We postulate that some prosaposin works as a precursor for saposins in the lysosomes and the other serves as an extracellular protein with other specific roles.  相似文献   

13.
14.
Prosaposin is the precursor of four activator proteins, termed saposins A, B, C, and D, that are required for much of glycosphingolipid hydrolysis. The intact precursor also has neurite outgrowth activity ex vivo and in vivo that is localized to amino acid residues 22-31 of saposin C. Across species, this saposin C region has a high degree of identity and similarity with amino acids in the analogous region of saposin A. Wild-type and mutant saposins C and A from human and mouse were expressed in E. coli. Pure proteins, synthetic peptide analogues, conformation-specific antibodies, and CD spectroscopy were used to evaluate the basis of the ex vivo neuritogenic effect. Wild-type saposin A had no neuritogenic activity whereas reduced and alkylated saposin A did. Introduction of the conserved saposin A Tyr 30 (Y30) into saposin C at the analogous position 31, a conserved Ala(A)/Gly(G)31, diminished neuritogenic activity by 50-60%. Nondenatured saposin A with an introduced A30 acquired substantial neuritogenic activity. Polyclonal antibodies directed against the NH2-terminus of saposin C cross-reacted well with reduced and alkylated saposins C and A, wild-type saposin C, and saposin A [Y30A], poorly with saposin C [A31Y], and not at all with wild-type saposin A. CD spectra of wild-type and mutant saposins C and A, the corresponding neuritogenic region of saposin C, and the analogous region of saposin A showed that more "saposin C-like" molecules had neuritogenic properties. Those with more "saposin A-like" spectra did not. These studies show that the neuritogenic activity of saposin C requires specific placement of amino acids, and that Y30 of saposin A significantly alters local conformation in this critical region and suppresses neuritogenic activity.  相似文献   

15.
Saposins and Their Interaction with Lipids   总被引:2,自引:0,他引:2  
The lysosomal degradation of several sphingolipids requires the presence of four small glycoproteins called saposins, generated by proteolytic processing of a common precursor, prosaposin. Saposins share several structural properties, including six similarly located cysteines forming three disulfide bridges with the same cysteine pairings. Recently it has been noted that also other proteins have the same polypeptide motif characterized by the similar location of six cysteines. These saposin-like (SAPLIP) proteins are surfactant protein B (SP-B), Entamoeba histolytica poreforming peptide, NK-lysin, acid sphingomyelinase and acyloxyacyl hydrolase. The structural homology and the conserved disulfide bridges suggest for all SAPLIPs a common fold, called saposin fold. Up to now a precise fold, comprising five -helices, has been established only for NK-lysin. Despite their similar structure each saposin promotes the degradation of specific sphingolipids in lysosomes, e.g. Sap B that of sulfatides and Sap C that of glucosylceramides. The different activities of the saposins must reside within the module of the -helices and/or in additional specific regions of the molecule. It has been reported that saposins bind to lysosomal hydrolases and to several sphingolipids. Their structural and functional properties have been extensively reviewed and hypotheses regarding their molecular mechanisms of action have been proposed. Recent work of our group has evidenced a novel property of saposins: some of them undergo an acid-induced change in hydrophobicity that triggers their binding to phospholipid membranes. In this article we shortly review recent findings on the structure of saposins and on their interactions with lipids, with special attention to interactions with phospholipids. These findings offer a new approach for understanding the physiological role of saposins in lysosomes.  相似文献   

16.
The compartmental nature of eukaryotic cells requires sophisticated mechanisms of protein sorting. Prosaposin, the precursor of four sphingolipid activator proteins, is transported from the trans-Golgi network (TGN) to lysosomes as a partially glycosylated (65 kDa) protein with high-mannose/hybrid oligosaccharides. Prosaposin is also found in the extracellular space where it is secreted as a fully glycosylated (70 kDa) protein composed of complex glycans. Although the trafficking of prosaposin to lysosomes is known to be mediated by sortilin, the mechanism of secretion of this protein is still unknown. In this study, we report that prosaposin may covalently aggregate into oligomers. Our results demonstrate that while prosaposin oligomers are secreted into the extracellular space, monomeric prosaposin remains inside the cell bound to sortilin. We also found that deletion of the C-terminus of prosaposin, previously shown to block its lysosomal transport, did not abolish its oligomerization and secretion. On the other hand, elimination of the N-terminus and of each saposin domain inhibited its oligomerization and resulted in its retention as a fully glycosylated protein. In conclusion, we are reporting for the first time that oligomerization of prosaposin is crucial for its entry into the secretory pathway.  相似文献   

17.
Saposin (Sap) D is a late endosomal/lysosomal small protein, generated together with three other similar proteins, Sap A, B, and C, from the common precursor, prosaposin. Although the functions of saposins such as Sap B and C are well known (Sap B promotes the hydrolysis of sulfatides and Sap C that of glucosylceramide), neither the physiological function nor the mechanism of action of Sap D are yet fully understood. We previously found that a dramatic increase of Sap D superficial hydrophobicity, occurring at the low pH values characteristic of the late endosomal/lysosomal environment, triggers the interaction of the saposin with anionic phospholipid-containing vesicles. We have presently found that, upon lipid binding, Sap D solubilizes the membranes, as shown by the clearance of the vesicles turbidity. The results of gel filtration, density gradient centrifugation, and negative staining electron microscopy demonstrate that this effect is due to the transformation of large vesicles to smaller particles. The solubilizing effect of Sap D is highly dependent on pH, the lipid/saposin ratio, and the presence of anionic phospholipids; small variations in each of these conditions markedly influences the activity of Sap D. The present study documents the interaction of Sap D with membranes as a complex process. Anionic phospholipids attract Sap D from the medium; when the concentration of the saposin on the lipid surface reaches a critical value, the membrane breaks down into recombinant small particles enriched in anionic phospholipids. Our results suggest that the role played by Sap D is more general than promoting sphingolipid degradation, e.g. the saposin might also be a key mediator of the solubilization of intralysosomal/late endosomal anionic phospholipid-containing membranes.  相似文献   

18.
Sphingolipid activator proteins (saposins A, B, C, and D) are derived from a common precursor protein (prosaposin) and specifically activate in vivo degradation of glycolipids with short carbohydrate chains. A mouse model of prosaposin deficiency (prosaposin-/-) closely mimics the human disease with an elevation of multiple glycolipids. The recently developed saposin A-/- mice showed a chronic form of globoid cell leukodystrophy, establishing the essential in vivo role of saposin A as an activator for galactosylceramidase to degrade galactosylceramide. Seminolipid, the principal glycolipid in spermatozoa, and its precursor/degradative product, galactosylalkylacylglycerol (GalEAG), were analyzed in the testis of the two mouse mutants by electrospray ionization mass spectrometry. Saposin A-/- mice showed the normal seminolipid level, while that of prosaposin-/- mice was approximately 150% of the normal level at the terminal stage. In contrast, GalEAG increased up to 10 times in saposin A-/- mice, whereas it decreased with age in the wild-type as well as in prosaposin-/- mice. These analytical findings on the two saposin mutants may shed some light on the physiological function of seminolipid and GalEAG.  相似文献   

19.
The gene for prosaposin was characterized by sequence analysis of chromosomal DNA to gain insight into the evolution of this locus that encodes four highly conserved sphingolipid activator proteins or saposins. The 13 exons ranged in size from 57 to 1200 bp, while the introns were from 91 to 3812 bp in length. The regions encoding saposins A, B, and D each had three exons, while that for saposin C had only two. This sequence included the regions that encode the carboxy terminus of the signal peptide, the four mature prosaposin proteins, and the 3' untranslated region. Primer extension studies indicated that over 99% of the coding sequence was contained in these 19,985 bp. Use of PCR and reverse PCR techniques indicated that the most 5' coding approximately 140 bp contained large introns and at least two small exons. Analyses of the intronic positions in the saposin regions indicated that this gene evolved from an ancestral gene by two duplication events and at least one gene rearrangement involving a double crossover after introns had been inserted into the gene.  相似文献   

20.
Combined saposin A and saposin B deficiency (AB−/−) was created in mice by knock-in of point mutations into the saposin A and B domains of the Psap (encoding prosaposin) locus. PSAP is the precursor of saposin A, saposin B and two other members, saposin C and saposin D. Those four saposins have multiple functions including their roles as glycosphingolipid activator proteins in a lysosomal glycosphingolipid degradation pathway. Saposin A participates in the removal of galactose from galactosylceramide and galactosylsphingosine by enhancing β-galactosylceramidase activity. Saposin B has lipid binding properties and is involved in glycosphingolipid metabolism by presenting the substrates to specific enzymes for degradation, i.e., sulfatide to ARSA/arylsulfatase A, lactosylceramide to GALC/GM-1-β-galactosylceramidase, and globotriaosylceramide to GLA/α-galactosidase. Galactosylceramide and sulfatide are myelin glycosphingolipids involved in carbohydrate interaction between synapses. The AB−/− mice develop accumulation of multiple glycosphingolipids in various organs. Sulfatide and galactosylsphingosine, a deacylated form of galactosylceramide, are the major substrates accumulated in the CNS of AB−/− mice. The latter is a toxic metabolite to oligodendrocytes and results in demyelination and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号