首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadherins are transmembrane receptors that mediate cell-cell adhesion. They play an essential role in embryonic development and maintenance of tissue architecture. The Rho family small GTPases regulate actin cytoskeletal dynamics in different cell types. The function of two family members, Rho and Rac, is required for the stability of cadherins at cell-cell contacts. Consistent with the published data we have found that Rac is activated upon induction of intercellular adhesion in epithelial cells. This activation is dependent on functional cadherins (Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N., and Kaibuchi, K. (2001) J. Cell Sci. 114, 1829-1838; Noren, N. K., Niessen, C. M., Gumbiner, B. M., and Burridge, K. (2001) J. Biol. Chem. 276, 3305-3308). Here we show for the first time that clustering of cadherins using antibody-coated beads is sufficient to promote Rac activation. In the presence of Latrunculin B, Rac can be partially activated by antibody-clustered cadherins. These results suggest that actin polymerization is not required for initial Rac activation. Contrary to what has been described before, phosphatidylinositol 3-kinases are not involved in Rac activation following cell-cell adhesion in keratinocytes. Interestingly, inhibition of epidermal growth factor receptor signaling efficiently blocks the increased Rac-GTP levels observed after contact formation. We conclude that cadherin-dependent adhesion can activate Rac via epidermal growth factor receptor signaling.  相似文献   

2.
In previous work, we showed that epidermal growth factor receptor (EGFR) activation causes mucin expression in airway epithelium in vivo and in human NCI-H292 airway epithelial cells and normal human bronchial epithelial (NHBE) cells in vitro. Here we show that the cell surface adhesion molecule, E-cadherin, promotes EGFR-mediated mucin production in NCI-H292 cells in a cell density- and cell cycle-dependent fashion. The addition of the EGFR ligand, transforming growth factor (TGF)-alpha, increased MUC5AC protein expression markedly in dense, but not in sparse, cultures. MUC5AC-positive cells in dense cultures contained 2 N DNA content and did not incorporate bromodeoxyuridine, suggesting that they develop via cell differentiation and that a surface molecule involved in cell-cell contact is important for EGFR-mediated mucin production. In support of this hypothesis, in dense cultures of NCI-H292 cells and in NHBE cells at air-liquid interface, blockade of E-cadherin-mediated cell-cell contacts decreased EGFR-dependent mucin production. E-cadherin blockade also increased EGFR-dependent cell proliferation and TGF-alpha-induced EGFR tyrosine phosphorylation in dense cultures of NCI-H292 cells, suggesting that E-cadherin promotes EGFR-dependent mucin production and inhibits EGFR-dependent cell proliferation via modulation of EGFR phosphotyrosine levels. Furthermore, in dense cultures, E-cadherin blockade decreased the rate of EGFR tyrosine dephosphorylation, implicating an E-cadherin-dependent protein tyrosine phosphatase in EGFR dephosphorylation. Thus E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC production, and our results suggest that this occurs via a pathway involving protein tyrosine phosphatase-dependent EGFR dephosphorylation.  相似文献   

3.
Neutrophil products are implicated in hypersecretory airway diseases. To determine the mechanisms linking a proteolytic effect of human neutrophil elastase (HNE) and mucin overproduction, we examined the effects of HNE on MUC5AC mucin production in human airway epithelial (NCI-H292) cells. Stimulation with HNE for 5-30 min induced MUC5AC production 24 h later, which was prevented by HNE serine active site inhibitors, implicating a proteolytic effect of HNE. MUC5AC induction was preceded by epidermal growth factor receptor (EGFR) tyrosine phosphorylation and was prevented by selective EGFR tyrosine kinase inhibitors, implicating EGFR activation. HNE-induced MUC5AC production was inhibited by a neutralizing transforming growth factor-alpha (TGF-alpha, an EGFR ligand) antibody and by a neutralizing EGFR antibody but not by oxygen free radical scavengers, further implicating TGF-alpha and ligand-dependent EGFR activation in the response. HNE decreased pro-TGF-alpha in NCI-H292 cells and increased TGF-alpha in cell culture supernatant. From these results, we conclude that HNE-induced MUC5AC mucin production occurs via its proteolytic activation of an EGFR signaling cascade involving TGF-alpha.  相似文献   

4.
Mucous hypersecretion is an important feature of obstructive airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Multiple stimuli induce mucin production via activation of an epidermal growth factor receptor (EGFR) cascade, but the mechanisms that exaggerate mucin production in obstructive airway diseases remain unknown. In this study, we show that binding of CCL20, a G protein-coupled receptor (GPCR) ligand that is upregulated in the airways of subjects with obstructive airway diseases, to its unique GPCR CCR6 induces MUC5AC mucin production in human airway epithelial (NCI-H292) cells via metalloprotease TNF-α-converting enzyme (TACE)-dependent EGFR activation. We also show that EGFR activation by its potent ligand TGF-α induces reactivation of EGFR via binding of endogenously produced CCL20 to its receptor CCR6 in NCI-H292 cells but not in normal human bronchial epithelial (NHBE) cells, exaggerating mucin production in the NCI-H292 cells. In NCI-H292 cells, TGF-α stimulation induced two phases of EGFR phosphorylation (EGFR-P). The second EGFR-P was TACE-dependent and was responsible for most of the total mucin induced by TGF-α. Binding of endogenously produced CCL20 to CCR6 increased the second EGFR-P and subsequent mucin production induced by TGF-α. In NHBE cells, TGF-α-induced EGFR activation did not lead to significant CCL20 production or to EGFR rephosphorylation, and less mucin was produced. We conclude that NCI-H292 cells but not NHBE cells produce CCL20 in response to EGFR activation, which leads to a second phase of EGFR-P and subsequent exaggerated mucin production. These findings have potentially important therapeutic implications in obstructive airway diseases.  相似文献   

5.
E-cadherins are well characterized cell surface molecules expressed in epithelial cells, which play a major role in cell adhesion through the establishment of calcium-dependent homophilic interactions at sites of cell-cell contacts. They are also integral components of morphogenetic programs controlling the maintenance of the structural and functional integrity of epithelia. Accumulated evidence indicates that the E-cadherin-mediated cell adhesion system is highly regulated from inside the cells by a number of intracellular signaling pathways. Recently available information suggests that E-cadherins may also play a role in the transduction of signals from the outside of the cell to the cytoplasm. However, the nature of the biochemical routes regulated by E-cadherins is still largely unknown. In this study, we set out to explore the possibility that E-cadherins may regulate the activity of MAPK, a key signaling pathway involved in cell fate decisions, upon the formation of cell-cell contacts among neighboring cells. By using an immortalized non-tumorigenic keratinocyte cell line, HaCat, as a model system, we provide evidence that the assembly of calcium-dependent adherens junctions leads to a rapid and remarkable increase in the state of activation of MAPK and that this event is mediated by E-cadherins. Furthermore, we found that E-cadherins stimulate the MAPK pathway through the ligand-independent activation of epidermal growth factor receptors and the consequent activation of a biochemical route leading to the stimulation of MAPKs. These findings suggest that E-cadherins can initiate outside-in signal transducing pathways through the engagement of tyrosine kinase receptors for epidermal growth factor, thus providing a novel molecular mechanism whereby these cell adhesion molecules may ultimately control the fate of normal and transformed epithelial cells.  相似文献   

6.
7.
High levels of the soluble form of E-cadherin can be found in the serum of cancer patients and are associated with poor prognosis. Despite the possible predictive value of soluble E-cadherin, little is understood concerning its patho-physiological consequences in tumor progression. In this study, we show that soluble E-cadherin facilitates cell survival via functional interaction with cellular E-cadherin. Exposure of cells to a recombinant form of soluble E-cadherin, at a concentration found in cancer patient's serum, prevents apoptosis due to serum/growth factor withdrawal, and inhibits epithelial lumen formation, a process that requires apoptosis. Further, soluble E-cadherin-mediated cell survival involves activation of the epidermal growth factor receptor (EGFR) and EGFR-mediated activation of both phosphoinositide-3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. These results are evidence of a complex functional interplay between EGFR and E-cadherin and also suggest that the presence of soluble E-cadherin in cancer patients' sera might have relevance to cell survival and tumor progression.  相似文献   

8.
Mucus hypersecretion contributes to the morbidity and mortality in acute asthma. Both T helper 2 (Th2) cytokines and epidermal growth factor receptor (EGFR) signaling have been implicated in allergen-induced goblet cell (GC) metaplasia. Present results show that a cascade of EGFR involving neutrophils is implicated in interleukin (IL)-13-induced mucin expression in GC. Treatment with a selective EGFR tyrosine kinase inhibitor prevented IL-13-induced GC metaplasia dose dependently and completely. Instillation of IL-13 also induced tumor necrosis factor-alpha protein expression, mainly in infiltrating neutrophils. Control airway epithelium contained few leukocytes, but intratracheal instillation of IL-13 resulted in time-dependent leukocyte recruitment by IL-13-induced IL-8-like chemoattractant expression in airway epithelium. Pretreatment with an inhibitor of leukocytes in the bone marrow (cyclophosphamide) or with a blocking antibody to IL-8 prevented both IL-13-induced leukocyte recruitment and GC metaplasia. These findings indicate that EGFR signaling is involved in IL-13-induced mucin production. They suggest a potential therapeutic role for inhibitors of the EGFR cascade in the hypersecretion that occurs in acute asthma.  相似文献   

9.
Healthy individuals have few goblet cells in their airways, but in patients with hypersecretory diseases goblet-cell upregulation results in mucus hypersecretion, airway plugging, and death. Multiple stimuli produce hypersecretion via epidermal growth factor receptor (EGFR) expression and activation, causing goblet-cell metaplasia from Clara cells by a process of cell differentiation. These cells are also believed to be the cells of origin of non-small-cell lung cancer, but this occurs via cell multiplication. The mechanisms that determine which pathway is chosen are critical but largely unknown. Although no effective therapy exists for hypersecretion at present, the EGFR cascade suggests methods for effective therapeutic intervention.  相似文献   

10.
11.
Eosinophil recruitment and mucus hypersecretion are characteristic of asthmatic airway inflammation, but eosinophils have not been shown to induce mucin production. Because an epidermal growth factor receptor (EGFR) cascade induces MUC5AC mucin in airways, and because EGFR is up-regulated in asthmatic airways, we examined the effect of eosinophils on MUC5AC mucin production in NCI-H292 cells (a human airway epithelial cell line that produces mucins). Eosinophils were isolated from the peripheral blood of allergic patients, and their effects on MUC5AC mucin gene and protein synthesis were assessed using in situ hybridization and ELISAs. When IL-3 plus GM-CSF or IL-3 plus IL-5 were added to eosinophils cultured with NCI-H292 cells, MUC5AC mucin production increased; eosinophils or cytokines alone had no effect. Eosinophil supernatant obtained by culturing eosinophils with IL-3 plus GM-CSF or IL-3 plus IL-5 also increased MUC5AC synthesis in NCI-H292 cells, an effect that was prevented by selective EGFR inhibitors (AG1478, BIBX1522). Supernatant of activated eosinophils induced EGFR phosphorylation in NCI-H292 cells. Supernatant of activated eosinophils contained increased concentrations of TGF-alpha protein (an EGFR ligand) and induced up-regulation of TGF-alpha expression and release in NCI-H292 cells. A blocking Ab to TGF-alpha reduced activated eosinophil-induced MUC5AC synthesis in NCI-H292 cells. These results show that activated eosinophils induce mucin synthesis in human airway epithelial cells via EGFR activation, and they implicate TGF-alpha produced by eosinophils and epithelial cells in the EGFR activation that results in mucin production in human airway epithelium.  相似文献   

12.
Epidermal growth factor (EGF) is known to play key roles in skin regeneration and wound-healing. Here, we demonstrate that Pep2-YAC, a tripeptide covering residues 29-31 in the B loop of EGF, promotes the proliferation of HaCaT keratinocytes with activity comparable to EGF. The treatment of HaCaT cells with Pep2-YAC induced phosphorylation, internalization, and degradation of EGFR and organization of signaling complexes, which consist of Grb2, Gab1, SHP2, and PI3K. In addition, it sti mulated the phosphorylation of ERK1/2 at Thr 202/Tyr 204 and of Akt1 at Ser 473 and the nuclear translocation of EGFR, STAT3, c-Jun, and c-Fos. These results suggest that Pep2-YAC may be useful as a therapeutic agent for skin regeneration and wound-healing as an EGFR agonist. [BMB Reports 2014; 47(10): 581-586]  相似文献   

13.
The potential significance of cell-cell interactions on EGF receptor (EGFR) activity was investigated in cultured adherent A431 cells seeded as single-cell suspensions with different initial cell densities. In dense cultures, EGFRs were mainly localised at cell boundaries and in microvilli as shown by immunofluorescence analysis with an EGFR-specific antibody while in sparse cultures the distribution of EGFRs was more diffuse. Scatchard analysis showed that as cell density decreased the number of high-affinity receptors increased considerably. Upon treatment of adherent intact cells with EGF all cells in sparse cultures contained activated EGFRs as demonstrated by immunofluorescence analysis with a phosphotyrosine-specific antibody, while in dense cultures mainly cells at the periphery of a cluster and especially at their expanding borders exhibited activated EGFRs. EGF-induced phosphorylation in intact cells was greatly enhanced in sparse compared with dense cultures as demonstrated by immunoprecipitation with a phosphotyrosine-specific antibody. In contrast to intact cells, in cytoskeleton preparations, obtained after mild detergent treatment of adherent cells, EGFRs were able to undergo EGF-independent phosphorylation. Pretreatment of cells with EGF led to enhanced tyrosine phosphorylation of cytoskeletal-associated proteins. Our observations suggest that cell density has a considerable effect on the subcellular localisation as well as biological activity of the EGFR. Thus, in intact A431 cells growing with extensive cell-cell interactions some negative control mechanisms preventing EGFR activation may be exerted by adjacent cells.  相似文献   

14.
Phospholipid scramblase (PLSCR1) is a multiply palmitoylated, calcium-binding endofacial membrane protein proposed to mediate transbilayer movement of plasma membrane phospholipids. PLSCR1 is a component of membrane lipid rafts and has been shown to both physically and functionally interact with activated epidermal growth factor (EGF) receptors and other raft-associated cell surface receptors. Cell stimulation by EGF results in Tyr phosphorylation of PLSCR1, its association with both Shc and EGF receptors, and rapid cycling of PLSCR1 between plasma membrane and endosomal compartments. We now report evidence that upon EGF stimulation, PLSCR1 is phosphorylated by c-Src, within the tandem repeat sequence 68VYNQPVYNQP77. The in vivo interaction between PLSCR1 and Shc requires the Src-mediated phosphorylation on tyrosines 69 and 74. In in vitro pull down studies, phosphorylated PLSCR1 was found to bind directly to Shc through the phosphotyrosine binding domain. Consistent with the potential role of PLSCR1 in growth factor signaling pathways, granulocyte precursors derived from mice deficient in PLSCR1 show impaired proliferation and maturation under cytokine stimulation. Using PLSCR1-/- embryonic fibroblasts and kidney epithelial cells, we now demonstrate that deletion of PLSCR1 from the plasma membrane reduces the activation of c-Src by EGF, implying that PLSCR1 normally facilitates receptor-dependent activation of this kinase. We propose that PLSCR1, through its interaction with Shc, promotes Src kinase activation through the EGF receptor.  相似文献   

15.
16.
MUC5AC mucins secreted by HT-29 cells in culture are oligomeric glycoproteins with characteristics similar to the MUC5AC mucins isolated from human airway sputum (Sheehan, J. K., Brazeau, C., Kutay, S., Pigeon, H., Kirkham, S., Howard, M., and Thornton, D. J. (2000) Biochem. J. 347, 37-44). Therefore we have used this cell line as a model system to investigate the biosynthesis of this major airway mucin. Initial experiments showed that the MUC5AC mucins isolated from the cells were liable to depolymerization depending on the conditions used for their solubilization. Prevention against reduction resulted in large oligomers associated with the cells, similar to those secreted into the medium. Using a combination of density gradient centrifugation and agarose gel electrophoresis coupled with probes specific for different forms of the mucin we identified five major intracellular populations of the MUC5AC polypeptide (unglycosylated monomer and dimer, GalNAc-substituted dimer, fully glycosylated dimer, and higher order oligomers). Pulse-chase studies were performed to follow the flow of radioactivity through these various intracellular forms into the mature oligomeric mucin secreted into the medium (a process taking approximately 2-4 h). The results show that the mucin polypeptide undergoes dimerization and then becomes substituted with GalNAc residues prior to glycan elaboration to produce a mature mucin dimer, which then undergoes multimerization. These data indicate that this oligomeric mucin follows a similar assembly to the von Willebrand factor glycoprotein to yield long linear disulfide-linked chains.  相似文献   

17.
《Phytomedicine》2015,22(5):568-572
BackgroundThe root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine.Hypothesis/purposeWe investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.Study designConfluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA.Results(1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10−5 M (p < 0.05) and 10−6 M (p < 0.05) or PMA at 10−4 M (p < 0.05), 10−5 M (p < 0.05) and 10−6 M (p < 0.05); (3) methylprotodioscin also suppressed the production of MUC5AC mucin induced by either EGF at 10−4 M (p < 0.05) or PMA at 10−4 M (p < 0.05).ConclusionThese results suggest that dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases.  相似文献   

18.
19.
Decorin is an established natural oncosuppressive factor whose action is being studied in detail. Recently, decorin gene therapy formulations using adenoviral vectors have been shown in several animal models with very promising results. The present study describes the first exception to the established oncosuppression model using human osteosarcoma cells. MG-63 osteosarcoma cells were found to constitutively produce decorin, and furthermore, to be resistant to decorin-induced growth arrest. On the contrary, decorin seemed to be beneficial to osteosarcoma cells because it was necessary for MG-63 cell migration and acted as a mediator, counteracting the transforming growth factor-beta2-induced cytostatic function. Efforts to determine how MG-63 cells could overcome the decorin-induced cytostatic effect established that decorin in MG-63 cells does not induce p21 expression nor does it cause protracted retraction and inactivation of the epidermal growth factor receptor. Conversely, epidermal growth factor receptor seemed to be overexpressed and continuously phosphorylated. In view of the proposed design of decorin-based anticancer therapeutic strategies, our study provides new data on pathways that cancer cells might employ to overcome the established decorin-induced growth suppression.  相似文献   

20.
Mucus hypersecretion from hyperplastic airway goblet cells is a hallmark of chronic obstructive pulmonary disease (COPD). Although cigarette smoking is thought to be involved in mucus hypersecretion in COPD, the mechanism by which cigarette smoke induces mucus overproduction is unknown. Here we show that activation of epidermal growth factor receptors (EGFR) is responsible for mucin production after inhalation of cigarette smoke in airways in vitro and in vivo. In the airway epithelial cell line NCI-H292, exposure to cigarette smoke upregulated the EGFR mRNA expression and induced activation of EGFR-specific tyrosine phosphorylation, resulting in upregulation of MUC5AC mRNA and protein production, effects that were inhibited completely by selective EGFR tyrosine kinase inhibitors (BIBX1522, AG-1478) and that were decreased by antioxidants. In vivo, cigarette smoke inhalation increased MUC5AC mRNA and goblet cell production in rat airways, effects that were prevented by pretreatment with BIBX1522. These effects may explain the goblet cell hyperplasia that occurs in COPD and may provide a novel strategy for therapy in airway hypersecretory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号