首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the c-Myc (Myc) oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS), the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC) are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.  相似文献   

2.
3.
The renal and cardiac benefits of renin-angiotensin system (RAS) inhibition in hypertension exceed those attributable to blood pressure reduction, and seem to involve mitochondrial function changes. To investigate whether mitochondrial changes associated with RAS inhibition are related to changes in nitric oxide (NO) metabolism, four groups of male Wistar rats were treated during 2 wk with a RAS inhibitor, enalapril (10 mg x kg(-1) x day(-1); Enal), or a NO synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME) (1 mg x kg(-1) x day(-1)), or both (Enal+L-NAME), or were untreated (control). Blood pressure and body weight were lower in Enal than in control. Electron transfer through complexes I to III and cytochrome oxidase activity were significantly lower, and uncoupling protein-2 content was significantly higher in kidney mitochondria isolated from Enal than in those from control. All of these changes were prevented by L-NAME cotreatment and were accompanied by a higher production/bioavailability of kidney NO. L-NAME abolished mitochondrial NOS activity but failed to inhibit extra-mitochondrial kidney NOS, underscoring the relevance of mitochondrial NO in those effects of enalapril that were suppressed by L-NAME cotreatment. In Enal, kidney mitochondria H(2)O(2) production rate and MnSOD activity were significantly lower than in control, and these effects were not prevented by L-NAME cotreatment. These findings may clarify the role of NO in the interactions between RAS and mitochondrial metabolism and can help to unravel the mechanisms involved in renal protection by RAS inhibitors.  相似文献   

4.
Most mitochondrial proteins are synthesized in the cytosol, translocated into the organelle and directed along specific sorting pathways. Over the past 20 years, >30 proteins have been identified as having key roles in mitochondrial protein import. Recently, the elucidation of the structures of several import components has provided fresh insight into the import process. Here, we review the different pathways involved in sorting proteins into mitochondrial subcompartments. Along the way, we highlight the available structural information about the protein-import machinery and discuss how these structures correlate with previously ascribed functions. Future challenges for the cell biologists will be to use this structural information to test specific hypotheses addressing the molecular mechanisms of mitochondrial protein import.  相似文献   

5.
Rat islet isolation yield and function are donor strain dependent   总被引:1,自引:0,他引:1  
Effective rat islet isolation is pertinent for successful islet transplantation and islet studies in vitro. To determine which rat strain yields the highest number of pure and functional islets, four commonly used rat strains were compared with regard to islet yield, islet purity and islet function. Secretory responses were assessed by stimulation with glucose, and by stimulation with glucose plus 3-isobutyl-1-methylxanthine (IBMX). We show that rat islet function and isolation yield are donor strain dependent. Albino Oxford (AO) rats donated twice as many islets than Wistar, Lewis and Sprague Dawley (SD) rats. Stimulation with glucose plus IBMX resulted in an average five-fold increase of the stimulation index of AO, Lewis, Wistar and SD rats compared to stimulation with glucose only. AO islets had improved secretory responses after a one-week culture period, but required the addition of IBMX to glucose to elicit a distinguished stimulated insulin secretion after 2 days of culture. Islets from SD rats showed inferior results with regard to purity immediately after isolation and with regard to function after short- and after long-time culture. Because Lewis islets possessed the highest secretory response to glucose (without IBMX) immediately after isolation, Lewis rats may be preferred as islet donors for immediate use. The addition of IBMX to glucose for in vitro functional testing is recommended because it elicits high insulin secretory responses of islets regardless of the rat strain. AO rats are preferred for culture experiments since the number of experimental animals is reduced two-fold compared to Lewis, Wistar and SD rats.  相似文献   

6.
Anesthetics exert multiple effects on the central nervous system through altering synaptic transmission, but the mechanisms for this process are poorly understood. PDZ domain-mediated protein interactions play a central role in organizing signaling complexes around synaptic receptors for efficient signal transduction. We report here that clinically relevant concentrations of inhalational anesthetics dose-dependently and specifically inhibit the PDZ domain-mediated protein interaction between PSD-95 or PSD-93 and the N-methyl-d-aspartate receptor or neuronal nitric-oxide synthase. These inhibitory effects are immediate, potent, and reversible and occur at a hydrophobic peptide-binding groove on the surface of the second PDZ domain of PSD-95 in a manner relevant to anesthetic action. These findings reveal the PDZ domain as a new molecular target for inhalational anesthetics.  相似文献   

7.
8.
Mitochondrial Complex I (NADH Coenzyme Q oxidoreductase) is the least understood of respiratory complexes. In this review we emphasize some novel findings on this enzyme that are of relevance to the pathogenesis of neurodegenerative diseases. Besides Coenzyme Q (CoQ), also oxygen may be an electron acceptor from the enzyme, with generation of superoxide radical in the mitochondrial matrix. The site of superoxide generation is debated: we present evidence based on the rational use of several inhibitors that the one-electron donor to oxygen is an iron-sulphur cluster, presumably N2. On this assumption we present a novel mechanism of electron transfer to the acceptor, CoQ. Strong evidence is accumulating that electron transfer from Complex I to Complex III via CoQ is not performed by operation of the CoQ pool but by direct channelling within a super-complex including Complex I, Complex III and bound CoQ. Besides structural evidence of a Complex I -Complex III aggregate obtained by native electrophoresis, we have obtained kinetic evidence based on metabolic flux analysis, demonstrating that Complexes I and III behave as an individual enzyme. Quantitative and qualitative changes of phospholipids, including peroxidation, may affect the supercomplex formation. Complex I is deeply involved in pathological changes, including neurodegeneration. Maternally inherited mutations in mitochondrial DNA genes encoding for Complex I subunits are at the basis of Leber's Hereditary Optic Neuropathy; a decrease of electron transfer in the complex, due to the mutations, is not sufficient per se to explain the clinical phenotype, and other factors including proton translocation and oxygen radical generation have been considered of importance. Complex I changes are also involved in more common neurological diseases of the adult and old ages. In this review we discuss Parkinson's disease, where the pathogenic involvement of Complex I is better understood; the accumulated evidence on the mode of action of Complex I inhibitors and their effect on oxygen radical generation is discussed in terms of the aetiology and pathogenesis of the disease.  相似文献   

9.
10.
11.
Two methods for isolation of plant metaphase chromosomes are described. The first, micromanipulation, allows the isolation of a number of individual chromosomes, which may be used as templates for the generation of chromosome specific DNA libraries and for physical sequence mapping by the polymerase chain reaction (PCR). The second provides, from synchronized meristems, pure chromosome suspensions suitable for flow cytometric analysis and chromosome sorting. Restriction endonuclease banding, immunostaining of chromosomal antigens, as well as fluorescence in situ hybridization at high signal to noise ratio were successfully performed on the isolated chromosomes. Chromosomes obtained by both protocols were suitable for scanning electron microscopy, the methods should also prove useful for refined analyses of the karyotypes of other plant species.by D. Schweizer  相似文献   

12.
Cell proliferation is associated with a high rate of aerobic glycolysis, which has been widely interpreted as a compensatory mechanism for suppressed mitochondrial function, despite reports of high respiration rates. The molecular mechanisms that link cell proliferation with mitochondrial metabolism, dynamics, and biogenesis remain obscure. Here, we show that?proliferation is associated with an increase in both glycolysis and respiration, in conjunction with mitochondrial fusion and biogenesis. Changes in mitochondrial morphology and mass are due to accumulation of OPA1, MFN1, and TFAM, silencing any of which hinders cell proliferation. Moreover, the levels of OPA1, MFN1, and TFAM are regulated by the ubiquitin ligase APC/C(CDH1), which also controls proteasomal degradation of key glycolytic, glutaminolytic, and cell-cycle proteins. Thus, we have identified an important component of the molecular mechanism that coordinates cell proliferation with activation of the mitochondrial metabolic machinery that provides the necessary energy and biosynthetic substrates.  相似文献   

13.
Mitochondrial function and alzheimer's disease   总被引:3,自引:0,他引:3  
The brain is highly dependent on aerobic metabolism. Normal mitochondrial function is therefore likely to play a critical role in neuronal function and integrity. Defects in the mitochondrial oxidative phosphorylation pathway (OXPHOS) have been demonstrated in aging human tissue including brain. It is not clear whether underlying mitochondrial DNA mutations are responsible for the observed functional defects. The previously reported OXPHOS defects, in particular reduced cytochrome c oxidase activity, in Alzheimer's disease (AD) are not likely to be due to specific enzyme dysfunction. The falloff in cytochrome c oxidase activity in AD brains is more likely to be related to a global decline in mitochondrial activity manifested by downregulation in mitochondrial number. It is not definitely established where the observed mitochondrial changes are placed in the AD cascade. A number of factors might contribute to the observed changes in OXPHOS function including mitochondrial transport through axonal and dendritic processes, compromised regulatory feedback mechanisms responsible for individual complex-subunit synthesis, and complex assembly.  相似文献   

14.
15.
Mitochondrial structure has been examined in three dimensions using high-resolution scanning electron microscopy in cells from rat liver, retina (photoreceptors and retinal pigment epithelium), and kidney (proximal convoluted tubular cells and podocytes). Tissues were prepared by aldehyde-osmium fixation and freeze cleavage using a cryoprotectant, followed by removal of the cytosol by immersion in a dilute osmium tetroxide solution. The microscope used (Hitachi S-570) was equipped with a secondary electron detector located in the column above the specimen, situated within the objective lens. Mitochondria in all tissues examined were found to have only tubular cristae, which in some instances could be seen to span the entire diameter of the organelle. The walls of the tubular cristae, when unfractured, were in contact with the inner mitochondrial membrane; and their lumens were open to the intermembranous space. We hypothesize that in cells of many, perhaps most tissues, mitochondrial cristae are not shelf-like but are, in fact, tubes which span the mitochondrial matrix and are continuous with the inner mitochondrial membrane at both ends.  相似文献   

16.
The circulating and tissue-bound forms of follistatin (FST315 and FST288, respectively) modulate the actions of activins. FST knockout (KO/null) mice, lacking both isoforms, die perinatally with defects in lung, skin, and the musculoskeletal system. Using constructs of the human FST gene engineered to enable expression of each isoform under the control of natural regulatory elements, transgenic mouse lines were created and crossed with FST null mice to attempt to rescue the neonatal lethality. FST288 expression alone did not rescue the neonatal lethality, but mice expressing FST315 on the KO background survived to adulthood with normal lung and skin morphology and partial reversal of the musculoskeletal defects noted in FST KO mice. The FST315 rescue mice displayed a short period of neonatal growth retardation, impaired tail growth, and female infertility. The latter may be due to failure of corpus luteum formation, a decline in the ovarian follicular population, and an augmented uterine inflammatory response to mating. Failure of corpus luteum formation and impaired tail growth indicate abnormal vascularization and suggest that FST288 is required for the promotion of angiogenesis. The augmented uterine inflammatory response may result from the failure of FST315 to modulate the proinflammatory actions of activin A in the uterus or may result from the altered steroid milieu associated with the ovarian abnormalities. Although we cannot definitively conclude that the remaining defects are due to the absence of a particular isoform or due to variable expression of each, these models have demonstrated novel physiological processes that are influenced by FST.  相似文献   

17.
In the yeast Saccharomyces cerevisiae, mismatch repair (MMR) is initiated by the binding of heterodimeric MutS homolog (MSH) complexes to mismatches that include single nucleotide and loop insertion/deletion mispairs. In in vitro experiments, the mismatch binding specificity of the MSH2-MSH6 heterodimer is eliminated if ATP is present. However, addition of the MutL homolog complex MLH1-PMS1 to binding reactions containing MSH2-MSH6, ATP, and mismatched substrate results in the formation of a stable ternary complex. The stability of this complex suggests that it represents an intermediate in MMR that is subsequently acted upon by other MMR factors. In support of this idea, we found that the replication processivity factor proliferating cell nuclear antigen (PCNA), which plays a critical role in MMR at step(s) prior to DNA resynthesis, disrupted preformed ternary complexes. These observations, in conjunction with experiments performed with streptavidin end-blocked mismatch substrates, suggested that PCNA interacts with an MSH-MLH complex formed on DNA mispairs.  相似文献   

18.
Paired intercellular transmembrane channels, termed connexons, comprised of hexameric assemblies of gap junction protein, were isolated and purified from rat liver by exploiting their resistance to either Sarkosyl detergent solubilization or alkali extraction. The secondary structures of the gap junction proteins prepared by these methods were compared by circular dichroism (CD) spectroscopy. Both the spectra and the calculated net secondary structures of the proteins obtained by the two isolation methods were different. The protein isolated by the Sarkosyl treatment was found to be approximately 50% alpha-helical, while protein isolated by alkali extraction had a lower helix content (approximately 40%). In both types of preparations, however, the helical content of the gap junction protein was sufficiently large to be consistent with an all-helical model for the membrane-spanning parts of the structure. CD spectroscopy was also used to examine the effects of proteolytic digestion of the cytoplasmic domain on the net secondary structure of the detergent-treated gap junction protein. The membrane-bound fragments had a slightly higher proportion of their residues that were alpha-helical in nature, suggesting that the transmembrane and/or intra-gap domains are indeed enriched in this type of secondary structure. This information constrains the range of models which can be realistically proposed for the channel structure.  相似文献   

19.
20.
Investigation of animal botulism outbreaks by PCR and standard methods   总被引:1,自引:0,他引:1  
Abstract A double PCR procedure is proposed for identification of Clostridium botulinum C and D. This method consists of a first PCR amplification with a degenerate primer pair able to amplify a 340 bp common DNA fragment from botulinum neurotoxin (BoNT) C1 and D genes, followed by two subsequent PCR amplifications with two primer pairs specific for BoNT/C1 and D respectively (198 bp DNA fragment). This method was found to be specific for C. botulinum C and D, amongst 81 strains of C. botulinum and 21 different species of other Clostridium and bacteria tested. The detection limit ranged from 10 to 103 bacteria in the reaction volume according to the C. botulinum C and D strains. In 160 naturally contaminated animal and food samples submitted to a 48 h enrichment culture, the double PCR showed an 89.4% correlation rate with the standard mouse bioassay. A clear distinction between botulism type C and D was obtained. The double PCR provides a reliable alternative for detection and identification of C. botulinum C and D in clinical and food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号