首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Silk fibroin (SF) nanofibers were prepared by electrospinning and treated with plasma in the presence of oxygen or methane gas to modify their surface characteristics. The surface characteristics of the SF nanofibers after plasma treatment were examined using contact angle measurements and XPS analysis. The hydrophilicity of the electrospun SF nanofibers decreased slightly by the CH4 plasma treatment. On the other hand, the hydrophilicity of the SF nanofibers increased greatly by an O2 plasma treatment. The O2-treated SF nanofibers showed higher cellular activities for both normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF) than the untreated ones.  相似文献   

2.
Electrospinning of chitin/silk fibroin (SF) blend solutions in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was investigated to fabricate a biomimetic nanostructured scaffolds for tissue engineering. The morphology of the electrospun chitin/SF blend nanofibers was investigated with a field emission scanning electron microscope (FE-SEM). The average diameters of chitin/SF blend fibers decreased from 920 to 340 nm, with the increase of chitin content in blend compositions. The miscibility of chitin/SF blend fibers was examined by solution viscosity measurement. The chitin and SF were immiscible in the as-spun nanofibrous structure. The dimensional stability of chitin/SF blend nanofibers, with or without water vapor after-treatment, was conducted by immersing in water. As-spun SF-rich blend nanofibrous matrices were lost their fibrous structure after the water immersion for 24 h, and then changed into membrane-like structure. On the contrary, nanofibrous structures of water vapor-treated SF-rich blends were almost maintained. To assay the cytocompatibility and cell behavior on the chitin/SF blend nanofibrous scaffolds, cell attachment and spreading of normal human epidermal keratinocyte and fibroblasts seeded on the scaffolds were studied. Our results indicate that chitin/SF blend nanofibrous matrix, particularly the one that contained 75% chitin and 25% SF, could be a potential candidate for tissue engineering scaffolds because it has both biomimetic three-dimensional structure and an excellent cell attachment and spreading for NHEK and NHEF.  相似文献   

3.
In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6-8 wt%, acceleration voltage ranging from 25 to 32 kV, spinning distance above 9 cm, and flow rate above 0.06 cm min(-1). The mean diameter of as spun sericin fibers varied from 114 to 430 nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a β-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber.  相似文献   

4.
Effects of electrospinning parameters (including voltage, collection distance, solution concentration and flow rate) on the morphology and diameter distribution of regenerated SF (silk fibroin) fiber were investigated. Afterward, SF tubular scaffold composed of homogenous fibers was fabricated at voltage of 18 kV, collection distance of 18 cm, concentration of 37%, and flow rate of 0.15 mL/min. After methanol treatment, SF tubular scaffold showed tensile strength of 3.57 MPa and porosity of 80.85%. It is satisfied that our work offers a simple method to fabricate seamless and porous tubular scaffold from SF without any additives and organic solvents. Furthermore, the results suggest that this tubular scaffold shows promising applications in small-diameter vascular graft.  相似文献   

5.
以家蚕丝素蛋白为原料,基于丝素自组装理论,通过酶解-干燥-溶解法制备不同尺寸的丝素蛋白微球,制备出的微球具有良好的水不溶性和稳定的分散性。对微球的形貌和结构表征结果表明,用该方法制备的丝素蛋白微球为纳米微球,当酶的添加量为2%且蛋白自组装时间为4 h时,丝素蛋白微球的平均粒径最小,仅为(32±11)nm。红外光谱(FT-IR)和X射线衍射(XRD)结果显示,微球中β-折叠结构的多少决定了微球晶体的大小,β-折叠越多,微球中晶体的体积越大。通过调控丝素蛋白自组装过程,可以制备平均粒径在30~140 nm之间的纳米丝素蛋白微球,且不引入任何有机溶剂和无机溶剂,制备过程绿色环保,制备出的丝素蛋白微球安全无毒。  相似文献   

6.
This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.  相似文献   

7.
Nanocomposite fibers of Bombyx mori silk and single wall carbon nanotubes (SWNT) were produced by the electrospinning process. Regenerated silk fibroin dissolved in a dispersion of carbon nanotubes in formic acid was electrospun into nanofibers. The morphology, structure, and mechanical properties of the electrospun nanofibers were examined by field emission environmental scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and microtensile testing. TEM of the reinforced fibers shows that the single wall carbon nanotubes are embedded in the fibers. The mechanical properties of the SWNT reinforced fiber show an increase in Young's modulus up to 460% in comparison with the un-reinforced aligned fiber, but at the expense of the strength and strain to failure.  相似文献   

8.
Nonwoven matrices of silk fibroin (SF) nanofibers were prepared by electrospinning a regenerated SF solution, followed by treatment with solvent vapor including water, methanol, ethanol, and propanol. Structural changes of solvent vapor-treated SF nanofibers were investigated in a time-resolved manner using IR spectroscopy. Conformational transitions of SF nanofibers from random coil to beta-sheet forms were dependent on the type of solvent vapor used, and their transition rates were strongly influenced by treatment temperatures. Consistent with previous findings, methanol vapor treatment provided a fast and effective means by which to alter the secondary structure of SF nanofibers. However, treatment with water vapor, as compared to treatment with alcohol vapor, was also useful for inducing structural changes in SF nanofibers. As demonstrated in the present study, our approach of controlling secondary structure formation of proteins by solvent vapor treatment and monitoring real-time conformational changes may be useful for the design and tailoring of materials for biomedical applications.  相似文献   

9.
为了进一步提高伤口敷料的止血性能,文中在生物相容性良好的壳聚糖溶液中引入含有多种生长因子的人源性富血小板血浆(Humanplatelet-richplasma,hPRP),并加入不同体积比例(1∶1、1∶3、3∶1、1∶0)的丝素蛋白溶液以提高材料的多孔性与止血性,通过冷冻干燥法制备不同配比的hPRP-壳聚糖/丝素蛋白敷料,并将纯壳聚糖敷料作为对照组,研究hPRP和丝素蛋白对敷料的止血性能的影响以及丝素蛋白对PRP中生长因子控制释放的影响。结果表明,在壳聚糖敷料中引入hPRP对敷料的止血性有所提高,但对敷料的多孔结构及吸水率无明显改善,若在hPRP-壳聚糖溶液中按照体积比为1∶1的比例加入丝素蛋白溶液,会得到具有较为均匀的多孔结构的敷料,敷料的孔隙率与吸水率分别可达到86.83%±3.84%与1 474%±114%,且该比例的敷料在快速止血性能上表现优异。此外,加入丝素蛋白与壳聚糖比例为1∶1的PRP敷料能有效减少PRP中生长因子在初始阶段的爆裂释放。因此,含hPRP的壳聚糖/丝素蛋白复合敷料有望成为一种能快速止血且能促进伤口愈合的新型伤口敷料。  相似文献   

10.
Silk fibroin (SF)/poly(vinyl alcohol) (PVA) blend filaments were prepared by a wet spinning process. Regenerated SF and PVA were dissolved in formic acid and the dope solution exhibited good fiber formation in a methanol coagulation bath. Due to the miscibility of SF/PVA in formic acid, the filament had a smooth surface and dense structure with a circular cross-section. The crystalline structure and thermal properties were varied with different SF/PVA ratios. The mechanical properties of the filament were also controlled by blending PVA with SF. Especially, the knot strength of the SF filament, which is a very important suture property, could be significantly improved by blending with PVA.  相似文献   

11.
A system was designed to utilize silk fibroin (SF) as a matrix for wound dressing. For this system, we prepared a sponge type of porous semi-interpenetrating networks (SIPNs) hydrogel composed of SF and poloxamer 407 macromer to enhance the mechanical and functional properties of SF. The thermal and mechanical properties of the hydrogels as well as their swelling behaviors were studied by means of differential scanning calorimetry, compressive modulus measurement, and gravimetric method, respectively. The morphology and crystalline structure of these SIPN hydrogels were also investigated by scanning electron microscopy (SEM) and wide-angle diffractometry, respectively. Conformational change of SF from random coil to beta-sheet structure was accelerated by formation of SIPNs with poloxamer. The melting temperature of poloxamer in the SIPNs decreased due to the prevention of crystallization by the incorporation of SF. The mechanical strength of SIPNs hydrogel was much higher than those of SF itself or SF/poloxamer blend and increased with the poloxamer content. The equilibrium water content of SF was remarkably increased by formation of SIPNs with poloxamer due to the hydrophilicity of poloxamer. The crystallinity and morphology of SIPNs hydrogel were affected by SIPNs hydrogel composition.  相似文献   

12.
13.
14.
This article describes the characteristics of silk fibroin membranes and glucose oxidase, immobilized in membranes as determined by a variety of physical methods, mainly the spin-label electron spin resonance (ESR) method. The properties of membranes insolubilized by different methods, i. e., immersion in 80% methanol aqueous solution, uniaxially drawing by placing on a stretcher, and hydration by placing in a desiccator of 96% relative humidity (RH) for 17 h, are compared. The results are also analyzed in relation to ESR spectra of spin-labeled immobilized glucose oxidase and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy as a model of the substrate. It is concluded that the heterogeneous structures of the swollen membranes in water differ locally among membranes insolubilized by different methods, but the immobilized state of the enzyme in such membranes is mostly similar. This is correlated to the fact that the thermal or pH stabilities are essentially same among glucose-oxidase-immobilized silk fibroin membranes insolubilized by different methods.  相似文献   

15.
The structure of gels formed from solutions of silk fibroin has been observed by electron microscopy. The gels consist of fibrils, and possible methods of formation of these fibrils are suggested.  相似文献   

16.
Degradation mechanism and control of silk fibroin   总被引:1,自引:0,他引:1  
Lu Q  Zhang B  Li M  Zuo B  Kaplan DL  Huang Y  Zhu H 《Biomacromolecules》2011,12(4):1080-1086
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material.  相似文献   

17.
Phase behavior and hydration of silk fibroin   总被引:2,自引:0,他引:2  
The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.  相似文献   

18.
The fine structure of Bombyx mori silk fibroin was investigated by electron microscopy and X-ray diffraction techniques. Examination of silk fibers fragmented with ultrasonic radiation and negatively stained revealed the presence of ribbon-like filaments of well-defined lateral dimensions. Analysis of the breadths of the equatorial reflections in the X-ray diffraction pattern of fibroin yielded similar dimensions for the lateral extent of the crystallites. It is concluded that the crystalline material in B. mori silk fibroin is in the form of ribbon-like filaments of considerable length parallel to the fiber axis and of lateral dimensions approximately 20 x 60 A.  相似文献   

19.
20.
Zhao C  Yao J  Masuda H  Kishore R  Asakura T 《Biopolymers》2003,69(2):253-259
High-resolution solution (13)C-NMR and CD studies of Bombyx mori silk fibroin revealed the presence of an ordered secondary structure 3(10)-helix, in hexafluoro-iso-propanol (HFIP). The solid-state structure of the silk fibroin film prepared by drying it gently from the HFIP solution still keep the structure, 3(10)-helix, which was studied with high-resolution solid state (13)C-NMR. The structural transition from the 3(10)-helix to silk II structure, heterogeneous structure including antiparallel beta-sheet, occurred during the artificial spinning from the HFIP solution. The wide-angle x-ray diffraction and differential scanning calorimetry thermograms of the artificial spinning fiber after postspinning treatments were observed together with the stress-strain curves. The results emphasize that the molecular structures, controlled morphology, and mechanical properties of the protein-based synthetic polymers can be modulated for enhancing biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号