首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to evaluate the combined effect of a meal replacement and an alleged weight loss supplement (WLS) on body composition, fitness parameters, and clinical health in moderately overweight college-aged men and women. Body mass, bench press 1 repetition maximum (1RM), leg press 1RM, body composition, V(O2)max, fasting glucose (GLU), and lipid panels were evaluated before (T1) and after (T2) 8 weeks of combined resistance training (RT) and cardiovascular training (CVT). After T1, subjects were randomly assigned in a double-blind fashion to either the WLS (6 men, 7 women; 21 ± 5 years, 168 ± 8 cm, 75.4 ± 12.7 kg, 31.6 ± 7.7%BFAT) or placebo (PLA: 6 men, 6 women; 22 ± 4 years, 174 ± 9 cm, 84.1 ± 8.8 kg, 30.2 ± 5.6%BFAT) group. Both groups performed 3 d · wk(-1) of combined progressive RT (2 × 12 reps of 8 exercises at 75-80% 1RM) and CVT (30 minutes on a cycle ergometer at 70-85% heart rate reserve). Subjects consumed 4 capsules per day and a once-daily meal replacement throughout the protocol. Percent body fat, bench press 1RM, and leg press 1RM significantly improved (p < 0.05) in both groups. Blood GLU (G × T; p = 0.048) improved in WLS and systolic blood pressure (SBP) approached significance (G × T; p = 0.06) in the WLS group. Follow-up analysis of SBP revealed a significant within-group decrease in the WLS group, whereas no within-group changes were found for either group for GLU. Practically speaking, daily supplementation with a meal replacement and a thrice weekly exercise program can increase fitness levels and improve body composition, whereas adding a thermogenic substance provides no additional benefit over fitness or body composition changes but may favorably alter serum markers of clinical health.  相似文献   

2.
To determine the effects of a 6-month supervised low-volume resistance training (RT) program (1 set, 85-90%, one repetition maximum, 1RM, 3 d x wk(-1)) on muscular strength (1RM) and skeletal muscle mass (SMM) in previously sedentary, overweight men on an ad libitum diet. Nineteen men were randomly assigned to a control (CON, n = 8) or RT (n = 11) group. The exercise protocol consisted of 5 upper- and 4 lower-body exercises using weight machines. CON maintained their sedentary lifestyle. One RM for upper body (chest press [CP] + lat pull-down [LPD]) and lower body (leg press [LP]) and SMM were assessed at baseline, and at 3 and 6 months. Adherence was 96 +/- 2% with an average time to complete each exercise session of 15 +/- 2 minutes. Volume completed per exercise session significantly increased from baseline (2,812 +/- 670 kg) to 6 months (6,411 +/- 2,128 kg). There was a group by time interaction in 1RM for CP, LPD, and LP. Upper-body strength increased significantly (p < 0.001) (31.3 +/- 9.3%) from baseline to 3 months and from 3 to 6 months (17.9 +/- 8.7%). Lower-body strength also increased significantly from baseline to 3 months (17.8 +/- 16.6%) and from 3 to 6 months (32.0 +/- 33.7%). No changes in upper- or lower-body strength occurred in the CON group. There was no group by time interaction for SMM (CON, 34.5 +/- 2.9 kg vs. RT, 34.2 +/- 2.9 kg; p > 0.05) or for energy intake (p > 0.05). In conclusion, a single set resistance training program at 85% of 1RM, 3 d x wk(-1) resulted in continued increases in muscular strength and a very high adherence rate over a 6-month period in sedentary, overweight men independent of significant changes in SMM. This training protocol may increase adherence and produce long-term increases in muscular fitness as part of an adult fitness program.  相似文献   

3.
effect of oral creatine supplementation (CR; 5 g/day) in conjunction with exercise training on physical fitness was investigated in men between 55 and 75 yr of age (n = 46). A double-blind randomized placebo-controlled (PL) trial was performed over a 6-mo period. Furthermore, a subgroup (n = 20) completed a 1-yr follow-up. The training program consisted of cardiorespiratory endurance training as well as moderate resistance training (2-3 sessions/wk). Endurance capacity was evaluated during a maximal incremental bicycle ergometer test, maximal isometric strength of the knee-extensor muscles was assessed by an isokinetic dynamometer, and body composition was assessed by hydrostatic weighing. Furthermore, in a subgroup (PL: n = 13; CR: n = 12) biopsies were taken from m. vastus lateralis to determine total creatine (TCr) content. In PL, 6 mo of training increased peak oxygen uptake rate (+16%; P < 0.05). Fat-free mass slightly increased (+0.3 kg; P < 0.05), whereas percent body fat slightly decreased (-1.2%; P < 0.05). The training intervention did not significantly change either maximal isometric strength or body weight. The responses were independent of CR. Still, compared with PL, TCr was increased by approximately 5% in CR, and this increase was closely correlated with initial muscle creatine content (r = -0.78; P < 0.05). After a 1-yr follow-up, muscle TCr was not higher in CR than in PL. Furthermore, the other measurements were not affected by CR. It is concluded that long-term creatine intake (5 g/day) in conjunction with exercise training does not beneficially impact physical fitness in men between 55 and 75 yr of age.  相似文献   

4.
The relationship of strength to muscle area was used to assess change in muscle quality after anabolic interventions. Study 1: asymptomatic human immunodeficiency virus-positive men (39 +/- 9 yr) were randomized to nandrolone (600 mg/wk) +/- resistance training (RT). Study 2: older healthy men (72 +/- 5 yr) were randomized to oxandrolone (20 mg/day) or placebo. Maximum voluntary strength was determined by the 1-repetition maximum (1-RM) method for leg press, flexion and extension, and cross-sectional area of leg muscles by MRI. From study week 0 to study week 12, muscle quality was unchanged with nandrolone, oxandrolone, or oxandrolone placebo, respectively, for total thigh muscles (1.23 +/- 0.012 vs. 1.27 +/- 0.29 kg/cm2; 9.0 +/- 1.1 vs. 8.9 +/- 1.2 N/cm2; 8.9 +/- 1.2 vs. 8.9 +/- 1.9 N/cm2) and hamstrings (0.41 +/- 0.08 vs. 0.43 +/- 0.07 kg/cm2; 0.90 +/- 0.14 vs. 0.95 +/- 0.016 N/cm2; 0.94 +/- 0.23 vs. 0.93 +/- 0.21 N/cm2). Lower-extremity 1-RM strength increased several times greater with RT+nandrolone (51-63% increases) than with nandrolone alone (4.7-16%), despite similar increases in muscle area; therefore, muscle quality increased from 1.13 +/- 0.17 to 1.51 +/- 0.18 kg/cm2 (+36 +/- 19%; P < 0.001) for total thigh muscle, 0.37 +/- 0.10 to 0.53 +/- 0.08 kg/cm2 (+49 +/- 39%; P < 0.001) for hamstrings, and 0.73 +/- 0.19 to 1.07 +/- 0.16 kg/cm2 (+55 +/- 36%; P < 0.001) for quadriceps. Thus androgen therapy alone did not improve muscle quality, but the addition of RT to nandrolone produced substantive improvements.  相似文献   

5.
Although a dose-response relationship between resistance training frequency and strength has been identified, there is limited research regarding the association between frequency and body composition. This study evaluated the effects of 3 vs. 4 d·wk(-1) of resistance training on body composition and strength in middle-aged women. Twenty-one untrained women (age 47.6 ± 1.2 years) completed 8 weeks of resistance training either 3 nonconsecutive days of the week using a traditional total-body protocol (RT3) or 4 consecutive days of the week using an alternating split-training protocol (RT4). The RT3 completed 3 sets of 8 exercises, whereas RT4 completed 3 sets of 6 upper body exercises or 6 sets of 3 lower body exercises. Both groups completed 72 sets per week of 8-12 repetitions at 50-80% 1 repetition maximum. Weekly training volume load was calculated as the total number of repetitions × load (kg) completed per week. Body composition was measured using air displacement plethysmography. At baseline and after 8 weeks of resistance training, there were no significant between-group differences. Both protocols resulted in significant increases in absolute lean mass (1.1 ± 0.3 kg; p = 0.001), body weight (1.02 ± 0.3 kg; p = 0.005), body mass index (0.3 ± 0.1 kg·m(-2); p = 0.006), strength (p < 0.001), and weekly training volume load (p < 0.001). Correlation analysis revealed that weekly training volume load was strongly and positively related to gains in lean mass (r = 0.56, p = 0.05) and strength (r = 0.60, p = 0.006). In these untrained, middle-aged women, initial short-term gains in lean mass and strength were not influenced by training frequency when the number of training sets per week was equated.  相似文献   

6.
Overweight and obesity result in musculoskeletal impairments that limit exercise capacity. We examined if the muscle strength and size response to resistance training (RT) differed among 687 young (mean +/- SEM, 24.2 +/- 0.2 years) overweight and obese (OW) compared to normal weight (NW) adults as denoted by the body mass index (BMI). Subjects were 449 NW (22.0 +/- 0.1 kg.m(-2), 23.4 +/- 0.3 years) and 238 OW (29.2 +/- 0.2 kg.m(-2), 25.6 +/- 0.4 years) men (n = 285) and women (n = 402) who underwent 12 weeks (2 d.wk(-1)) of RT of the nondominant arm. Maximum voluntary contraction (MVC) and 1 repetition maximum (1RM) assessed peak elbow flexor strength. Magnetic resonance imaging measured the biceps muscle cross sectional area (CSA). Multiple dependent variable analysis of covariance tested if muscle strength and size differed among BMI groups pre-, post-, and pre-to-post-RT. Overweight and obese had greater MVC, 1RM, and CSA than NW pre- and post-RT (p < 0.001). Maximum voluntary contraction and 1RM gains were not different between BMI groups pre- to post-RT (p >or= 0.05). When adjusted for baseline values, NW had greater relative MVC (21.2 +/- 1.0 vs. 17.4 +/- 1.4%) and 1RM (54.3 +/- 1.5 vs. 49.0 +/- 2.0%) increases than OW (p < 0.05). Normal weight also had greater allometric MVC (0.48 +/- 0.02 kg.kg(-0.67) vs. 0.40 +/- 0.03 kg.kg(-0.67)) and 1RM (0.25 +/- 0.00 vs. 0.22 +/- 0.01 kg.kg(-0.67)) gains than OW (p < 0.05). CSA gains were greater among OW than NW (3.6 +/- 0.2 vs. 3.2 +/- 0.1 cm(2)) (p < 0.001); however, relative CSA increases were not different between BMI groups (19.4 +/- 0.5 vs. 18.4 +/- 0.7%) (p >or= 0.05). Despite similar relative muscle size increases, relative and allometic strength gains were less among OW than NW. These findings indicate the short-term relative and allometric muscle strength response to RT may be attenuated among adults who are overweight and obese.  相似文献   

7.
Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar (P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm(3), 12.5%; ibuprofen: 84 ± 10 cm(3), 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent (P < 0.05) than placebo (muscle volume: 69 ± 12 cm(3), 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced (P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced (P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles (P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.  相似文献   

8.
Strength training generates alterations in muscle geometry, which can be monitored by imaging techniques as, for example, the ultrasound (US) technique. There is no consensus about the homogeneity of hypertrophy in different muscle sites. Therefore, the purpose of this study was to compare the muscle thickness (MT) and pennation angle (PA) in 3 different sites (50, 60, and 70% of arm length) of the biceps brachii and triceps brachii after 12 weeks of strength training. Forty-nine healthy untrained men were divided into 2 groups: Training Group ([TG, n = 40] 29.90 ± 1.72 years; 79.53 ± 11.84 kg; 173 ± 0.6 cm) and Control Group (n = 9 25.89 ± 3.59 years; 73.96 ± 9.86 kg; 171 ± 6 cm). The TG underwent a strength training program during 12 weeks, which included exercises such as a free-weight bench press, machine lat pull-down, triceps extension in lat pull-down, and standing free-weight biceps curl with a straight bar. A US apparatus was used to measure the PA and MT at the 3 sites. The maximal voluntary isometric contraction (MVC) test was conducted for each muscle group. After 12 weeks of training, a significant difference was observed between MT in biceps brachii, with an improvement of 12% in the proximal site, whereas the distal site increased by only 4.7% (p < 0.05). For the long head of the triceps brachii, the MT and PA at the 3 sites presented significant increases, but no significant variation was observed among them, probably because of the pennated-fiber arrangement. The MVC increased significantly for both muscle groups. The results indicated that the strength training program was efficient in promoting hypertrophy in both muscles, but with dissimilar responses of the pennated and fusiform muscle architecture at different arm sites.  相似文献   

9.
The aim of this study was to investigate the effects of nonlinear periodized (NLP) and linear periodized (LP) resistance training (RT) on muscle thickness (MT) and strength, measured by an ultrasound technique and 1 repetition maximum (1RM), respectively. Thirty untrained men were randomly assigned to 3 groups: NLP (n = 11, age: 30.2 ± 1.1 years, height: 173.6 ± 7.2 cm, weight: 79.5 ± 13.1 kg), LP (n = 10, age: 29.8 ± 1.9 years, height: 172.0 ± 6.8 cm, weight: 79.9 ± 10.6 kg), and control group (CG; n = 9, age: 25.9 ± 3.6 years, height: 171.2 ± 6.3 cm, weight: 73.9 ± 9.9 kg). The right biceps and triceps MT and 1RM strength for the exercises bench press (BP), lat-pull down, triceps extension, and biceps curl (BC) were assessed before and after 12 weeks of training. The NLP program varied training biweekly during weeks 1-6 and on a daily basis during weeks 7-12. The LP program followed a pattern of intensity and volume changes every 4 weeks. The CG did not engage in any RT. Posttraining, both trained groups presented significant 1RM strength gains in all exercises (with the exception of the BP in LP). The 1RM of the NLP group was significantly higher than LP for BP and BC posttraining. There were no significant differences in biceps and triceps MT between baseline and posttraining for any group; however, posttraining, there were significant differences in biceps and triceps MT between NLP and the CG. The effect sizes were higher in NLP for the majority of observed variables. In conclusion, both LP and NLP are effective, but NLP may lead to greater gains in 1RM and MT over a 12-week training period.  相似文献   

10.
The purpose of this investigation was to compare partial range-of-motion vs. full range-of-motion upper-body resistance training on strength and muscle thickness (MT) in young men. Volunteers were randomly assigned to 3 groups: (a) full range of motion (FULL; n = 15), (b) partial range of motion (PART; n = 15), or (c) control (CON; n = 10). The subjects trained 2 d · wk(-1) for 10 weeks in a periodized program. Primary outcome measures included elbow flexion maximal strength measured by 1 repetition maximum (1RM) and elbow flexors MT measured by ultrasound. The results indicated that elbow flexion 1RM significantly increased (p < 0.05) for the FULL (25.7 ± 9.6%) and PART groups (16.0 ± 6.7%) but not for the CON group (1.7 ± 5.5%). Also, FULL 1RM strength was significantly greater than the PART 1RM after the training period. Average elbow flexor MT significantly increased for both training groups (9.65 ± 4.4% for FULL and 7.83 ± 4.9 for PART). These data suggest that muscle strength and MT can be improved with both FULL and PART resistance training, but FULL may lead to greater strength gains.  相似文献   

11.
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.  相似文献   

12.
We aimed to investigate the role of betaine supplementation on muscle phosphorylcreatine (PCr) content and strength performance in untrained subjects. Additionally, we compared the ergogenic and physiological responses to betaine versus creatine supplementation. Finally, we also tested the possible additive effects of creatine and betaine supplementation. This was a double-blind, randomized, placebo-controlled study. Subjects were assigned to receive betaine (BET; 2?g/day), creatine (CR; 20?g/day), betaine plus creatine (BET?+?CR; 2?+?20?g/day, respectively) or placebo (PL). At baseline and after 10?days of supplementation, we assessed muscle strength and power, muscle PCr content, and body composition. The CR and BET?+?CR groups presented greater increase in muscle PCr content than PL (p?=?0.004 and p?=?0.006, respectively). PCr content was comparable between BET versus PL (p?=?0.78) and CR versus BET?+?CR (p?=?0.99). CR and BET?+?CR presented greater muscle power output than PL in the squat exercise following supplementation (p?=?0.003 and p?=?0.041, respectively). Similarly, bench press average power was significantly greater for the CR-supplemented groups. CR and BET?+?CR groups also showed significant pre- to post-test increase in 1-RM squat and bench press (CR: p?=?0.027 and p?<?0.0001; BET?+?CR: p?=?0.03 and p?<?0.0001 for upper- and lower-body assessments, respectively) No significant differences for 1-RM strength and power were observed between BET versus PL and CR versus BET?+?CR. Body composition did not differ between the groups. In conclusion, we reported that betaine supplementation does not augment muscle PCr content. Furthermore, we showed that betaine supplementation combined or not with creatine supplementation does not affect strength and power performance in untrained subjects.  相似文献   

13.
The purpose of this study was to investigate the effects of a light, high-repetition resistance-training program on skinfold thicknesses and muscular strength in women. Thirty-nine active women (mean age 38.64 +/- 4.97 years) were randomly placed into a resistance-training group (RT; n = 20) or a control group (CG; n = 19). The RT group performed a resistance-training program called Bodymax for 1 hour, 3 d.wk(-1), which incorporated the use of variable free weights and high repetitions in a group setting. The CG group continued its customary aerobic training for 1 hour 3 d.wk(-1). Five skinfold and 7 muscular strength measures were determined pretraining and after 12 weeks of training. Sum of skinfolds decreased (-17 mm; p < 0.004) and muscular strength increased (+57.4 kg; p < 0.004) in the RT group. Effect sizes for individual skinfold sites and strength measures were "medium" and "high," respectively. Bodymax is an effective resistance-training program for reducing skinfold thickness and increasing muscular strength in active women. Therefore, women with a similar or lower-activity status should consider incorporating such training into their regular fitness programs.  相似文献   

14.
Changes in muscle mass and strength will vary, depending on the volume and frequency of training. The purpose of this study was to determine the effect of short-term equal-volume resistance training with different workout frequency on lean tissue mass and muscle strength. Twenty-nine untrained volunteers (27-58 years; 23 women, 6 men) were assigned randomly to 1 of 2 groups: group 1 (n = 15; 12 women, 3 men) trained 2 times per week and performed 3 sets of 10 repetitions to fatigue for 9 exercises, group 2 (n = 14; 11 women, 3 men) trained 3 times per week and performed 2 sets of 10 repetitions to fatigue for 9 exercises. Prior to and following training, whole-body lean tissue mass (dual energy x-ray absorptiometry) and strength (1 repetition maximum squat and bench press) were measured. Both groups increased lean tissue mass (2.2%), squat strength (28%), and bench press strength (22-30%) with training (p < 0.05), with no other differences. These results suggest that the volume of resistance training may be more important than frequency in developing muscle mass and strength in men and women initiating a resistance training program.  相似文献   

15.
The influence of creatine supplementation on substrate utilization during rest was investigated using a double-blind crossover design. Ten active men participated in 12 wk of weight training and were given creatine and placebo (20 g/day for 4 days, then 2 g/day for 17 days) in two trials separated by a 4-wk washout. Body composition, substrate utilization, and strength were assessed after weeks 2, 5, 9, and 12. Maximal isometric contraction [1 repetition maximum (RM)] leg press increased significantly (P < 0.05) after both treatments, but 1-RM bench press was increased (33 +/- 8 kg, P < 0.05) only after creatine. Total body mass increased (1.6 +/- 0.5 kg, P < 0.05) after creatine but not after placebo. Significant (P < 0.05) increases in fat-free mass were found after creatine and placebo supplementation (1.9 +/- 0.8 and 2.2 +/- 0.7 kg, respectively). Fat mass did not change significantly with creatine but decreased after the placebo trial (-2.4 +/- 0.8 kg, P < 0.05). Carbohydrate oxidation was increased by creatine (8.9 +/- 4.0%, P < 0.05), whereas there was a trend for increased respiratory exchange ratio after creatine supplementation (0.03 +/- 0.01, P = 0.07). Changes in substrate oxidation may influence the inhibition of fat mass loss associated with creatine after weight training.  相似文献   

16.
The purpose of this study was to investigate the effects of rest interval (RI) length on bench press performance in subjects with disparity in maximum strength. Two cohorts of subjects performed 3 bench press protocols in random order consisting of 3 sets of up to 10 repetitions with 75% of 1-repetition maximum (1RM) using either 1-, 2-, or 3-minute RIs between sets. In the first cohort, 22 men and women were studied to investigate gender influence. In the second cohort, 23 men were tested for 1RM bench press strength and placed into a low 1RM (mean = 80.7 ± 7.5 kg) or high 1RM (mean = 140.6 ± 11.9 kg) experimental group. The number of successful repetitions completed, average power, and velocity for each set were recorded. Women performed significantly more repetitions than men with 1-minute (26.9 ± 4.4 vs. 21.1 ± 3.5), 2-minute (29.0 ± 2.0 vs. 24.0 ± 4.5), and 3-minute (29.7 ± 1.8 vs. 25.8 ± 5.1) RIs. The magnitude of decline in average velocity and power was significantly higher in men than in women. Total number of repetitions performed was significantly greater in the low 1RM group than in the high 1RM group at 1-minute (21.6 ± 5.0 vs. 18.1 ± 2.0) and 2-minute RIs (24.2 ± 5.4 vs. 21.3 ± 2.8). Significant negative correlations were observed between 1RM bench press and total number of repetitions completed for 1- and 2-minute RIs (r = -0.558 and -0.490, respectively). These data indicate that maximal strength plays a role in bench press performance with varying RIs and suggest that shorter RIs may suffice in women to attain a specific volume.  相似文献   

17.
This study examined the effects of resistance training (RT) on knee extensor peak torque (KEPT) and fat-free mass (FFM) in older women. Seventy-eight volunteers (67.1 ± 5.9 years old) underwent 24 weeks of progressive RT (RTG) while 76 (67.4 ± 5.9 years old) were studied as controls (CG). Dominant knee extension peak torque was assessed using an isokinetic dynamometer (Biodex System 3) and FFM measurements were performed by dual-energy x-ray absorptiometry. Muscle strength and FFM were evaluated before and after the intervention in all volunteers. Participants in the RTG trained major muscle groups 3 times per week during 24 weeks. Training load was kept at 60% of 1 repetition maximum in the first 4 weeks, 70% in the following 4 weeks, and 80% in the remaining 16 weeks, with repetitions, respectively, decreasing from 12, 10, and 8. A Split-plot analysis of variance was performed to examine between- and within-group differences, and the level of significance was accepted at p ≤ 0.05. It was observed that the RTG showed significant increases in KEPT (from 89.9 ± 21.8 to 102.8 ± 22.6 N·m; p < 0.05) and FFM (from 36.4 ± 4.0 to 37.1 ± 4.2 kg, p < 0.05). Appendicular FFM was also significantly increased after the intervention period in the RTG (13.9 ± 1.8 to 14.2 ± 1.9 kg, p < 0.05). None of these changes were observed for the CG. Consistent with the literature, it is concluded that a progressive RT program promotes not only increases in muscle strength, as evaluated by an isokinetic dynamometer, but also in FFM as evaluated by the DXA, in elderly women.  相似文献   

18.
The purpose of this study was to determine the degree of upper-body strength gained by college women who are underweight and those who are obese using different modes of resistance training. Women who were underweight (UWW, n = 93, weight = 49.3 ± 4.5 kg) and women who were obese (OBW, n = 73, weight = 94.0 ± 15.1 kg) were selected from a larger cohort based on body mass index (UWW ≤ 18.5 kg·m?2; OBW ≥ 30 kg·m?2). Subjects elected to train with either free weights (FW, n = 38), supine vertical bench press machine (n = 52) or seated horizontal bench press machine (n = 76) using similar linear periodization resistance training programs 3× per week for 12 weeks. Each participant was assessed for upper-body strength using FWs (general) and machine weight (specific) 1 repetition maximum bench press before and after training. Increases in general and mode-specific strength were significantly greater for OBW (5.2 ± 5.1 and 9.6 ± 5.1 kg, respectively) than for UWW (3.5 ± 4.1 and 7.2 ± 5.2 kg, respectively). General strength gains were not significantly different among the training modes. Mode-specific gains were significantly greater (p < 0.05) than general strength gains for all groups. In conclusion, various resistance training modes may produce comparable increases in general strength but will register greater gains if measured using the specific mode employed for training, regardless of the weight category of the individual.  相似文献   

19.
The purpose of this study was to examine the effects of 7 days of supplementation with 20 g·d?1 of creatine monohydrate (CM) on mean power (MP) and peak power (PP) from the Wingate anaerobic test (WAnT), body weight (BW), 1-repetition maximum (1RM) bilateral leg extension (LE) strength, and 1RM bench press (BP) strength. This study used a randomized, double-blind, placebo-controlled design. Twenty-two men (mean ± SD: age = 22.1 ± 2.0 years; height = 178.0 ± 5.8 cm; body weight [BW] = 77.6 ± 7.6 kg) were randomly assigned to either a supplement (SUPP; n = 10) or placebo (PLAC; n = 12) group. The SUPP group ingested 20 g·d?1 of CM powder for 7 days, whereas the PLAC ingested 20 g·d?1 of maltodextrin powder. Measurements for the PLAC and SUPP groups included BW, PP, and MP from two 30-second WAnTs (separated by 7 minutes), and 1RM strength for LE and BP. Testing was conducted before (PRE) and after (POST) 7 days of ingesting either the supplement or placebo. The results of this study indicated that there was a significant (p ≤ 0.05) increase from PRE to POST testing in MP for the SUPP group (5.4%) but not for the PLAC group (-0.3%). There were no between-group differences, however, for 1RM LE and 1RM BP strength. Furthermore, there were no changes in PP or BW for either group. The findings of this study indicated that loading with 20 g·d?1 of CM for 7 days increased MP (5.4% increase) from the WAnT, but it had no effect on strength (1RM LE and 1RM BP), PP, or BW.  相似文献   

20.
The purpose of this study was to apply cross-education during 4 wk of unilateral limb immobilization using a shoulder sling and swathe to investigate the effects on muscle strength, muscle size, and muscle activation. Twenty-five right-handed participants were assigned to one of three groups as follows: the Immob + Train group wore a sling and swathe and strength trained (n = 8), the Immob group wore a sling and swathe and did not strength train (n = 8), and the Control group received no treatment (n = 9). Immobilization was applied to the nondominant (left) arm. Strength training consisted of maximal isometric elbow flexion and extension of the dominant (right) arm 3 days/wk. Torque (dynamometer), muscle thickness (ultrasound), maximal voluntary activation (interpolated twitch), and electromyography (EMG) were measured. The change in right biceps and triceps brachii muscle thickness [7.0 ± 1.9 and 7.1 ± 2.2% (SE), respectively] was greater for Immob + Train than Immob (0.4 ± 1.2 and -1.9 ± 1.7%) and Control (0.8 ± 0.5 and 0.0 ± 1.1%, P < 0.05). Left biceps and triceps brachii muscle thickness for Immob + Train (2.2 ± 0.7 and 3.4 ± 2.1%, respectively) was significantly different from Immob (-2.8 ± 1.1 and -5.2 ± 2.7%, respectively, P < 0.05). Right elbow flexion strength for Immob + Train (18.9 ± 5.5%) was significantly different from Immob (-1.6 ± 4.0%, P < 0.05). Right and left elbow extension strength for Immob + Train (68.1 ± 25.9 and 32.2 ± 9.0%, respectively) was significantly different from the respective limb of Immob (1.3 ± 7.7 and -6.1 ± 7.8%) and Control (4.7 ± 4.7 and -0.2 ± 4.5%, P < 0.05). Immobilization in a sling and swathe decreased strength and muscle size but had no effect on maximal voluntary activation or EMG. The cross-education effect on the immobilized limb was greater after elbow extension training. This study suggests that strength training the nonimmobilized limb benefits the immobilized limb for muscle size and strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号