首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Oxidized lipoproteins may play an important role in the pathogenesis of atherosclerosis. Elevated levels of 3-chlorotyrosine, a specific end product of the reaction between hypochlorous acid (HOCl) and tyrosine residues of proteins, have been detected in atherosclerotic tissue. Thus, HOCl generated by the phagocyte enzyme myeloperoxidase represents one pathway for protein oxidation in humans. One important target of the myeloperoxidase pathway may be high density lipoprotein (HDL), which mobilizes cholesterol from artery wall cells. To determine whether activated phagocytes preferentially chlorinate specific sites in HDL, we used tandem mass spectrometry (MS/MS) to analyze apolipoprotein A-I that had been oxidized by HOCl. The major site of chlorination was a single tyrosine residue located in one of the protein's YXXK motifs (where X represents a nonreactive amino acid). To investigate the mechanism of chlorination, we exposed synthetic peptides to HOCl. The peptides encompassed the amino acid sequences YKXXY, YXXKY, or YXXXY. MS/MS analysis demonstrated that chlorination of tyrosine in the peptides that contained lysine was regioselective and occurred in high yield if the substrate was KXXY or YXXK. NMR and MS analyses revealed that the N(epsilon) amino group of lysine was initially chlorinated, which suggests that chloramine formation is the first step in tyrosine chlorination. Molecular modeling of the YXXK motif in apolipoprotein A-I demonstrated that these tyrosine and lysine residues are adjacent on the same face of an amphipathic alpha-helix. Our observations suggest that HOCl selectively targets tyrosine residues that are suitably juxtaposed to primary amino groups in proteins. This mechanism might enable phagocytes to efficiently damage proteins when they destroy microbial proteins during infection or damage host tissue during inflammation.  相似文献   

2.
Chlorination of proteins by the myeloperoxidase-H2O2-Cl- system results in light emission. Out of all amino acids present in proteins only tryptophan delivers light during chlorination. Chlorination of tryptophan by the myeloperoxidase-H2O2-Cl- system, as well as by HOCl or taurine chloramine is associated with chemiluminescence. pH dependence and time pattern of light emission is similar for chlorination of tryptophan by the myeloperoxidase system and taurine, but appears to be different for chlorination by HOCl. Aerobic conditions are necessary for chemiluminescence of chlorinated tryptophan.  相似文献   

3.
Hen egg white lysozyme (HEL), an antibacterial enzyme, is a prototype protein for studying the physical and chemical events that underlie the formation of amyloid fibril aggregates. Here, we studied alterations in enzymatic activity and aggregation provoked by oxidation of HEL by hypochlorous acid (HOCl), hypobromous acid (HOBr), taurine chloramine (Tau-NHCl), taurine monobromamine (Tau-NHBr), and taurine dibromamine (Tau-NBr(2)). Addition of only 4-fold molar excess of Tau-NHBr or Tau-NBr(2) to HEL caused complete depletion of its intrinsic fluorescence, whereas HOCl and HOBr caused 40%-50% bleaching. Tau-NHCl was unable to oxidize lysozyme. The selective effect of bromamines on tryptophan residues had a direct effect on enzymatic activity; bromamines were about two-fold more effective as inhibitors of lysozyme than the acid precursors. The oxidation of HEL by HOCl and HOBr was more effective regarding the aggregation of the protein, which was evidenced by increased turbidity, Rayleigh scattering, and anisotropy. The aggregates presented spectroscopic properties that suggested the formation of amyloid fibrils, as measured by the thioflavin assay. In conclusion, the capacity of Tau-NHBr and Tau-NBr(2) as inhibitors of the bactericidal activity of HEL could represent a role in the exacerbation of pulmonary infection, since leukocytes are rich sources of both taurine and HOBr. Moreover, the oxidation of HEL by just a small excess of hypohalous acids, a condition that could be found in inflammatory sites, may represent a new pathway for initiation of aggregation.  相似文献   

4.
The first complete mechanistic analysis of halide ion oxidation by a peroxidase was that of iodide oxidation by horseradish peroxidase. It was shown conclusively that a two-electron oxidation of iodide by compound I was occurring. This implied that oxygen atom transfer was occurring from compound I to iodide, forming hypoiodous acid, HOI. Searches were conducted for other two-electron oxidations. It was found that sulfite was oxidized by a two-electron mechanism. Nitrite and sulfoxides were not. If a competing substrate reduces some compound I to compound II by the usual one-electron route, then compound II will compete for available halide. Thus compound II oxidizes iodide to an iodine atom, I*, although at a slower rate than oxidation of I by compound I. An early hint that mammalian peroxidases were designed for halide ion oxidation was obtained in the reaction of lactoperoxidase compound II with iodide. The reaction was accelerated by excess iodide, indicating a co-operative effect. Among the heme peroxidases, only chloroperoxidase (for example from Caldariomyces fumago) and mammalian myeloperoxidase are able to oxidize chloride ion. There is not yet a consensus as to whether the chlorinating agent produced in a peroxidase-catalyzed reaction is hypochlorous acid (HOCl), enzyme-bound hypochlorous acid (either Fe-HOCl or X-HOCl where X is an amino acid residue), or molecular chlorine Cl2. A study of the nonenzymatic iodination of tyrosine showed that the iodinating reagent was either HOI or I2. It was impossible to tell which species because of the equilibria: [reaction: see text] The same considerations apply to product analysis of an enzyme-catalyzed reaction. Detection of molecular chlorine Cl2 does not prove it is the chlorinating species. If Cl2 is in equilibrium with HOCl then one cannot tell which (if either) is the chlorinating reagent. Examples will be shown of evidence that peroxidase-bound hypochlorous acid is the chlorinating agent. Also a recent clarification of the mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride along with accurate determination of the elementary rate constants will be discussed.  相似文献   

5.
The chlorination activity of free myeloperoxidase and myeloperoxidase bound with ceruloplasmin or with both ceruloplasmin and lactoferrin has been studied by luminal-dependent chemiluminescence. It was shown that the addition of hydrogen peroxide to the "myeloperoxidase + Cl- + luminal" system is accompanied by a fast flash of light emission. In the absence of myeloperoxidase or Cl-, the flash intensity was considerably reduced. The inhibitor of myeloperoxidase NaN3, the HOCl scavengers taurine and methionine, and guaiacol, a substrate for peroxidation cycle of myeloperoxidase, prevented luminescence. These results suggest that the generation of luminescence was due to the halogenating activity of myeloperoxidase, and hence, the flash light sum may serve as a measure of chlorination activity of myeloperoxidase. The activity of myeloperoxidase was suppressed by ceruloplasmin. Lactoferrin exhibited no significant influence on the myeloperoxidase activity, nor did it prevent the inhibitory effect of ceruloplasmin when they both were combined with myeloperoxidase. These data were confirmed using alternative approaches for evaluating the myeloperoxidase activity, namely, the assessment of peroxidation activity and the taurine chlorination assay. It is noteworthy that the inhibitory effect of ceruloplasmin on chlorination and peroxidation activities of myeloperoxidase is seen with the latter, traditional approaches only if ceruloplasmin is present in a large excess relative to myeloperoxidase, whereas the chemiluminescence method allows the detection of the inhibitory effect of ceruloplasmin using lower proportions of the protein with respect to myeloperoxidase, which are close to the stoichiometry of the myeloperoxidase/ceruloplasmin and the myeloperoxidase'ceruloplasmin'lactoferrin complexes.  相似文献   

6.
The nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of inflammation by mechanisms that are not completely understood. MPO (myeloperoxidase), which plays a fundamental role in oxidant production by neutrophils, is an important target for anti-inflammatory action. By amplifying the oxidative potential of H2O2, MPO produces hypochlorous acid and radicals through the oxidizing intermediates MPO-I [MPO-porphyrin?+-Fe(IV)=O] and MPO-II [MPO-porphyrin-Fe(IV)=O]. Previously, we reported that tempol reacts with MPO-I and MPO-II with second-order rate constants similar to those of tyrosine. However, we noticed that tempol inhibits the chlorinating activity of MPO, in contrast with tyrosine. Thus we studied the inhibition of MPO-mediated taurine chlorination by tempol at pH 7.4 and re-determined the kinetic constants of the reactions of tempol with MPO-I (k=3.5×105 M-1·s-1) and MPO-II, the kinetics of which indicated a binding interaction (K=2.0×10-5 M; k=3.6×10-2 s-1). Also, we showed that tempol reacts extremely slowly with hypochlorous acid (k=0.29 and 0.054 M-1·s-1 at pH 5.4 and 7.4 respectively). The results demonstrated that tempol acts mostly as a reversible inhibitor of MPO by trapping it as MPO-II and the MPO-II-tempol complex, which are not within the chlorinating cycle. After turnover, a minor fraction of MPO is irreversibly inactivated, probably due to its reaction with the oxammonium cation resulting from tempol oxidation. Kinetic modelling indicated that taurine reacts with enzyme-bound hypochlorous acid. Our investigation complements a comprehensive study reported while the present study was underway  相似文献   

7.
Abstract

The first complete mechanistic analysis of halide ion oxidation by a peroxidase was that of iodide oxidation by horseradish peroxidase. It was shown conclusively that a two-electron oxidation of iodide by compound I was occurring. This implied that oxygen atom transfer was occurring from compound I to iodide, forming hypoiodous acid, HOI. Searches were conducted for other two-electron oxidations. It was found that sulfite was oxidized by a two-electron mechanism. Nitrite and sulfoxides were not. If a competing substrate reduces some compound I to compound II by the usual one-electron route, then compound II will compete for available halide. Thus compound II oxidizes iodide to an iodine atom, I·, although at a slower rate than oxidation of I- by compound I. An early hint that mammalian peroxidases were designed for halide ion oxidation was obtained in the reaction of lactoperoxidase compound II with iodide. The reaction was accelerated by excess iodide, indicating a co-operative effect. Among the heme peroxidases, only chloroperoxidase (for example from Caldariomyces fumago) and mammalian myeloperoxidase are able to oxidize chloride ion. There is not yet a consensus as to whether the chlorinating agent produced in a peroxidase-catalyzed reaction is hypochlorous acid (HOCl), enzyme-bound hypochlorous acid (either Fe–HOCl or X–HOCl where X is an amino acid residue), or molecular chlorine Cl2. A study of the non-enzymatic iodination of tyrosine showed that the iodinating reagent was either HOI or I2. It was impossible to tell which species because of the equilibria:

I2+H2O=HOI+I-+H+</ p>

I-+I2=I3-

The same considerations apply to product analysis of an enzyme-catalyzed reaction. Detection of molecular chlorine Cl2 does not prove it is the chlorinating species. If Cl2 is in equilibrium with HOCl then one cannot tell which (if either) is the chlorinating reagent. Examples will be shown of evidence that peroxidase-bound hypochlorous acid is the chlorinating agent. Also a recent clarification of the mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride along with accurate determination of the elementary rate constants will be discussed.  相似文献   

8.
Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in humans and plays an important role in several essential biological processes such as bile acid conjugation, maintenance of calcium homeostasis, osmoregulation and membrane stabilization. Moreover, attenuation of apoptosis and its antioxidant activity seem to be crucial for the cytoprotective effects of taurine. Although these properties are not tissue specific, taurine reaches particularly high concentrations in tissues exposed to elevated levels of oxidants (e.g., inflammatory cells). It suggests that taurine may play an important role in inflammation associated with oxidative stress. Indeed, at the site of inflammation, taurine is known to react with and detoxify hypochlorous acid generated by the neutrophil myeloperoxidase (MPO)–halide system. This reaction results in the formation of less toxic taurine chloramine (TauCl). Both haloamines, TauCl and taurine bromamine (TauBr), the product of taurine reaction with hypobromous acid (HOBr), exert antimicrobial and anti-inflammatory properties. In contrast to a well-documented regulatory role of taurine and taurine haloamines (TauCl, TauBr) in acute inflammation, their role in the pathogenesis of inflammatory diseases is not clear. This review summarizes our current knowledge concerning the role of taurine, TauCl and TauBr in the pathogenesis of inflammatory diseases initiated or propagated by MPO-derived oxidants. The aim of this paper is to show links between inflammation, neutrophils, MPO, oxidative stress and taurine. We will discuss the possible contribution of taurine and taurine haloamines to the pathogenesis of inflammatory diseases, especially in the best studied example of rheumatoid arthritis.  相似文献   

9.
A spectrophotometric assay for chlorine-containing compounds.   总被引:3,自引:0,他引:3  
Determinations of hypochlorous acid and chloramine compounds are important in a number of areas. Several techniques are now available for such analyses, but most require unstable reagents and/or multiple steps in the analytical procedure. We have developed a simple, one-step spectrophotometric assay for reactive chlorine-containing compounds involving the oxidation of ascorbic acid by hypochlorous acid or chloramines. There is no interference from other nonhalide oxidants such as hydrogen peroxide or hypothiocyanous acid. Because small amounts of ascorbic acid will not damage biological materials, this method also allows continuous measurements of the generation of chlorine-containing compounds by activated neutrophils. This simple assay permits precise analysis of as little as 1 nmol of HOCl.  相似文献   

10.
Chlorination of monochlorodimedon is routinely used to measure the production of hypochlorous acid catalysed by myeloperoxidase from H2O2 and Cl-. We have found that the myeloperoxidase/H2O2/Cl- system, at pH 7.8, catalysed the loss of monochlorodimedon with a rapid burst phase followed by a much slower steady-state phase. The loss of monochlorodimedon in the absence of Cl- was only 10% of the steady-state rate in the presence of Cl-, which indicates that the major reaction of monochlorodimedon was with hypochlorous acid. During the steady-state reaction, myeloperoxidase was present as 100% compound II, which cannot participate directly in hypochlorous acid formation. Monochlorodimedon was necessary for formation of compound II, since it was not formed in the presence of methionine. Both the amount of hypochlorous acid formed during the burst phase, and the steady-state rate of hypochlorous acid production, increased with increasing concentrations of myeloperoxidase and with decreasing concentrations of monochlorodimedon. Inhibition by monochlorodimedon was competitive with Cl-. From these results, and the ability of myeloperoxidase to slowly peroxidase monochlorodimedon in the absence of Cl-, we propose that the reaction of monochlorodimedon with the myeloperoxidase/H2O2/Cl- system involves a major pathway due to hypochlorous acid-dependent chlorination and a minor peroxidative pathway. Only a small fraction of compound I needs to react with monochlorodimedon instead of Cl- at each enzyme cycle, for compound II to rapidly accumulate. Monochlorodimedon, therefore, cannot be regarded as an inert detector of hypochlorous acid production by myeloperoxidase, but acts to limit the chlorinating activity of the enzyme. In the presence of reducing species that act like monochlorodimedon, the activity of myeloperoxidase would depend on the rate of turnover of compound II. Components of human serum promoted the conversion of ferric-myeloperoxidase to compound II in the presence of H2O2. We suggest, therefore, that in vivo the rate of turnover of compound II may determine the rate of myeloperoxidase-dependent production of hypochlorous acid by stimulated neutrophils.  相似文献   

11.
A large-scale purification procedure was developed for the isolation of myeloperoxidase from HL60 promyelocytic cells in culture. Initial studies showed the bulk of peroxidase-positive myeloperoxidase activity to be located in the cetyltrimethylammonium bromide solubilized particulate fraction of cell homogenates. The myeloperoxidase was then chromatographically purified using concanavalin A followed by gel filtration. SDS-PAGE analysis of the final preparation showed the presence of only two proteins with molecular masses of approximately 55 and 15 kDa, corresponding to the large and small subunits of myeloperoxidase. These data, along with Reinheit Zahl (RZ) values (A(430)/A(280)) of greater than or equal to 0.72, indicate that the myeloperoxidase prepared by this method is apparently homogeneous. Preparations routinely yielded 12-20 mg of pure myeloperoxidase per 10 ml of cell pellet. The HL60 myeloperoxidase was shown to be indistinguishable from purified human neutrophil myeloperoxidase by size exclusion chromatography, analytical ultracentrifugation, SDS-PAGE, Western blot, and NH(2)-terminal sequence analysis. The activities of the two myeloperoxidase samples, as measured using either the tetramethylbenzidine or the taurine chloramine assay, were indistinguishable. Finally, both enzymes responded identically to dapsone and aminobenzoic acid hydrazide, known inhibitors of myeloperoxidase. A protocol is presented here for the rapid, large-scale purification of myeloperoxidase from cultured HL60 cells, as well as evidence for the interchangeability of this myeloperoxidase and that purified from human neutrophils.  相似文献   

12.
Production of hydrogen peroxide and secretion of myeloperoxidase by stimulated neutrophils resulted in myeloperoxidase-catalyzed oxidation of chloride to hypochlorous acid (HOCl), the reaction of HOCl with taurine to yield taurine monochloramine (TauNHCl), and accumulation of TauNHCl in the extracellular medium. When erythrocytes were present, the yield of TauNHCl was lower as the result of uptake of TauNHCl into erythrocytes. The zwitterion taurine was not taken up, but the anion TauNHCl and other anionic oxidants including taurine dichloramine (TauNCl2) and L-alanine chloramines were transported into erythrocytes by the anion-transport system. Oxidation of intracellular components such as glutathione (GSH) by taurine chloramines resulted in reduction of the chloramines and trapping of taurine within erythrocytes. At high oxidant:erythrocyte ratios, TauNHCl also oxidized hemoglobin (Hb) and depleted ATP, but caused little lysis. TauNCl2 was much more effective as a lytic agent. At low oxidant:erythrocyte ratios, the chloramines caused net loss of GSH when no glucose was provided, but Hb was not oxidized and GSH content returned to normal when glucose was added. Therefore, anionic chloramines may mediate oxidative toxicity when the neutrophil:erythrocyte ratio is high. Under more physiologic conditions, chlorination of taurine by neutrophils and the uptake and reduction of TauNHCl by erythrocytes prevents accumulation of oxidants and may protect blood cells, plasma components, and tissues against oxidative toxicity.  相似文献   

13.
The heme-containing enzyme myeloperoxidase (MPO) accumulates at inflammatory sites and is able to catalyse one- and two-electron oxidation reactions. Here it is shown that (-)-epicatechin, which is known to have numerous beneficial health effects, in low micromolar concentration enhances the degradation of monochlorodimedon (MCD) or the chlorination of taurine in a concentration-dependent bell-shaped manner whereas at higher concentrations it sufficiently suppresses the release of hypochlorous acid. Presented reaction mechanisms demonstrate the efficiency of micromolar concentrations of the flavan-3-ol in overcoming the accumulation of compound II that does not participate in the chlorination cycle. In case of MCD the mechanism is more complicated since it also acts as peroxidase substrate with very different reactivity towards compound I (3 × 105 M−1 s−1) and compound II (8.8 M−1 s−1) at pH 7. By affecting the chlorinating activity of myeloperoxidase (-)-epicatechin may participate in regulation of immune responses at inflammatory sites.  相似文献   

14.
Leucocytes challenged by Staphylococcus epidermidis or stimulated by phorbol myristate acetate (PMA) produce cyanide from thiocyanate. The amount of H14CN formed depends on KS14CN concentration and is enhanced by pretreatment of phagocytosed bacteria with penicillin or by adding amine-taurine to the medium of PMA-stimulated neutrophils. The reaction of taurine chloramine or chlorinated Staphylococcus epidermidis (containing N-Cl groups) with thiocyanate results in HCN formation. At higher concentration of chloramine cyanogen chloride is formed. Cyanide is chlorinated by PMA-stimulated neutrophils and this process is significantly enhanced by exogenous taurine and inhibited by 3-amino 1,2,4-triazole. It is conceivable that oxidation of thiocyanate to HCN and chlorination of HCN to ClCN is mediated by the chlorinating species (taurine chloramine) produced by stimulated neutrophils.  相似文献   

15.
Hypochlorous acid (HOCl) and chloramines are produced by the neutrophil enzyme, myeloperoxidase. Both react readily with thiols, although chloramines differ from HOCl in discriminating between low molecular weight thiols on the basis of their pKa. Here, we have compared the reactivity of HOCl and taurine chloramine with thiol proteins by examining inactivation of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). With both enzymes, loss of activity paralleled thiol loss. For CK both were complete at a 1:1 taurine chloramine:thiol mole ratio. For GAPDH each chloramine oxidized two thiols. Three times more HOCl than taurine chloramine was required for inactivation, indicating that HOCl is less thiol specific. Competition studies showed that thiols of CK were 4 times more reactive with taurine chloramine than thiols of GAPDH (rate constants of 1200 and 300 M-1s-1 respectively). These compare with 205 M-1s-1 for cysteine and are consistent with their lower pKa's. Both enzymes were equally susceptible to HOCl. GSH competed directly with the enzyme thiols for taurine chloramine and protected against oxidative inactivation. At lower GSH concentrations, mixed disulfides were formed. We propose that chloramines should preferentially attack proteins with low pKa thiols and this could be important in regulatory processes.  相似文献   

16.
Inhibition of free radical mechanisms by desferrioxamine, an iron chelator, is often thought to be a good indicator of iron-catalyzed hydroxyl radical (OH.) production. The specificity of desferrioxamine is critical for such identification. This study was undertaken to determine whether desferrioxamine could prevent the in vitro cytotoxic reactions of hypochlorous acid (HOCl), a major neutrophil-derived oxidant. Red blood cells were used as a target for HOCl, and cell lysis and haemoglobin oxidation were measured. Desferrioxamine, and its iron-chelated form, ferrioxamine, were shown to prevent both effects of HOCl. However, desferrioxamine was 6 to 8 times more efficient than either ferrioxamine or taurine, another amine which prevents HOCl-mediated cell lysis, in preventing both lysis and Hb oxidation. After reaction with HOCl, ferrioxamine and taurine retained almost all the oxidizing equivalents as long-lived chloramine. However, with desferrioxamine less than half the oxidizing equivalents were recovered as chloramines indicating that sites other than the terminal amine reacted with HOCl. The chloramines formed were able to oxidize molecules in solution, but being hydrophilic they were confined to the extracellular medium and cell lysis did not occur. The results indicate that scavenging of HOCl could be a factor in the inhibition by desferrioxamine of neutrophil-mediated cell lysis in vitro.  相似文献   

17.
To investigate neutrophil interactions with mediators released by mast cells at sites of inflammation, stimulated neutrophils were incubated with histamine. No accumulation of chlorinated histamine derivatives was detected in the medium. Instead, histamine inhibited the formation of chloramine derivatives of other amines. Incubation with radiolabeled histamine resulted in rapid uptake of label into the cells, and most of the label could be extracted and recovered as histamine. About 3% of the label taken up was incorporated into acid-precipitable forms. Uptake depended on myeloperoxidase (MPO)-catalyzed formation of chlorinating agents. Uptake was promoted by adding MPO and blocked by the MPO inhibitor dapsone, catalase, scavengers for hypochlorous acid and chloramines, or in a low-chloride medium, but not by histamine receptor antagonists. Incubation of histamine with MPO, hydrogen peroxide, and chloride resulted in formation of mono- and dichloramine derivatives of the primary amino group. Above pH 7.0, the chloramines were primarily in uncharged, lipophilic forms as indicated by partitioning into organic solvents. Histamine is a cation at neutral pH, but chlorination eliminated the charge on the amino group and shifted the pKa of the imidazole ring, resulting in formation of neutral histamine-chloramines. Incubation of neutrophils or other blood cells with radiolabeled histamine-chloramines resulted in rapid uptake of label, indicating membrane permeation by the uncharged, lipid-soluble forms. Incubation with labeled histamine-dichloramine also resulted in acid-precipitable incorporation. The results indicate that MPO-catalyzed chlorination of histamine could modulate histamine activity, tissue distribution, and metabolism at sites of inflammation.  相似文献   

18.
Myeloperoxidase is proposed to play a central role in bacterial killing by generating hypochlorous acid within neutrophil phagosomes. However, it has yet to be demonstrated that these inflammatory cells target hypochlorous acid against bacteria inside phagosomes. In this investigation, we treated Staphylococcus aureus with varying concentrations of reagent hypochlorous acid and found that even at sublethal doses, it converted some tyrosine residues in their proteins to 3-chlorotyrosine and 3,5-dichlorotyrosine. To determine whether or not ingested bacteria were exposed to hypochlorous acid in neutrophil phagosomes, we labeled their proteins with [(13)C(6)]tyrosine and used gas chromatography with mass spectrometry to identify the corresponding chlorinated isotopes after the bacteria had been phagocytosed. Chlorinated tyrosines were detected in bacterial proteins 5 min after phagocytosis and reached levels of approximately 2.5/1000 mol of tyrosine at 60 min. Inhibitor studies revealed that chlorination was dependent on myeloperoxidase. Chlorinated neutrophil proteins were also detected and accounted for 94% of total chlorinated tyrosine residues formed during phagocytosis. We conclude that hypochlorous acid is a major intracellular product of the respiratory burst. Although some reacts with the bacteria, most reacts with neutrophil components.  相似文献   

19.
Two natural flavonoids, quercetin and isorhamnetin 3-O-acylglucosides, were examined for their inhibitory influence on the in vitro production and release of reactive oxygen species in polymorphonuclear neutrophils (PMNs). The generation of superoxide radical, hydrogen peroxide and hypochlorous acid were measured by, respectively, cytochrome c reduction, dichlorofluorescin oxidation and taurine chlorination. Membrane lipid oxidation was studied by the thiobarbituric acid method in mouse spleen microsomes. The addition of flavonoids at the concentration range 1-100 microM inhibited PMNs oxidative metabolism and lipid peroxidation in a dose-dependent manner. The results suggest that these flavonoids suppress the oxidative burst of PMNs and protect membranes against lipid peroxidation.  相似文献   

20.
Most studies of protein oxidation have typically focused on the reactivity of single amino acid side chains while ignoring the potential importance of adjacent sequences in directing the reaction pathway. We previously showed that hypochlorous acid (HOCl), a specific product of myeloperoxidase, inactivates matrilysin by modifying adjacent tryptophan and glycine (WG) residues in the catalytic domain. Here, we use model peptides that mimic the region of matrilysin involved in this reaction, VVWGTA, VVWATA, and the library VVWXTA, to determine whether specific sequence motifs are targeted for chlorination or oxygenation by myeloperoxidase. Our results demonstrate that HOCl generated by myeloperoxidase or activated neutrophils converts the peptide VVWGTA to a chlorinated product, WG+32(Cl). Tandem mass spectrometry in concert with high resolution 1H and two-dimensional NMR analysis revealed that the modification required cross-linking of the tryptophan to the amide of glycine followed by chlorination of the indole ring of tryptophan. In contrast, when glycine in the peptide was replaced with alanine, the major products were mono- and dioxygenated tryptophan residues. When the peptide library VVWXTA (where X represents all 20 common amino acids) was exposed to HOCl, only WG produced a high yield of the chloroindolenine derivative. However, when glycine was replaced by other amino acids, oxygenated tryptophan derivatives were the major products. Our observations indicate that WG may represent a specific sequence motif in proteins that is targeted for chlorination by myeloperoxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号