首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orphanin FQ/Nociceptin (OFQ/N) administered peripherally was an effective analgesic in the tailflick test in mice (ED50 16.3 microg). It had a peak effect at 5 min and lasted up to 30 min. The kappa3 analgesic naloxone benzoylhydrazone was also active peripherally (ED50 3.8 microg). The analgesic actions of both agents were blocked by naloxone. Neither OFQ/N(1-11) nor OFQ/N(1-7) had appreciable peripheral activity. Antisense mapping both compounds against the murine orphan opioid receptor (KOR-3) confirmed the importance of this clone in their actions. Antisense probes targeting the second and third coding exons significantly lowered the analgesic effects of both compounds. However, the antisense targeting the first coding exon blocked only the actions of OFQ/N and not kappa3 analgesia.  相似文献   

2.
This study was designed to characterize the role of the newly described endogenous opioid nociceptin/orphanin FQ (NOC/oFQ) in reduced cerebral blood flow (CBF) observed after ischemia-reperfusion (I/R) and combined hypoxia and ischemia-reperfusion (H-I/R), as a function of time after onset of reperfusion in newborn pigs equipped with a closed cranial window. Global cerebral ischemia (20 min) was induced via elevation of intracranial pressure, whereas hypoxia (10 min) decreased PO(2) to 35 +/- 3 mmHg with unchanged PCO(2). I/R elevated cerebrospinal fluid (CSF) NOC/oFQ from 67 +/- 4 to 266 +/- 29 pg/ml within 1 h, whereas values returned to control level within 4 h of reperfusion. H-I/R elevated CSF NOC/oFQ to 483 +/- 67 pg/ml within 1 h, and such values returned slowly to control level within 12 h of reperfusion. Topical NOC/oFQ (10(-8) M, 10(-6) M)-induced vasodilation was attenuated by I/R and reversed to vasoconstriction by H-I/R at 1 h of reperfusion (control, 9 +/- 1 and 16 +/- 1%; I/R, 3 +/- 1 and 6 +/- 1%; H-I/R, -6 +/- 1 and -11 +/- 1%). Such altered dilation returned to control values within 4 h in I/R animals and within 12 h in H-I/R animals. Blood flow in the cerebrum was reduced from 58 +/- 4 to 33 +/- 2 ml x min(-1) x 100 g(-1) within 1 h and returned to control value within 4 h in I/R animals. In animals pretreated with [F/G]NOC/oFQ(1-13)-NH(2) (1 mg/kg iv), an NOC/oFQ antagonist, however, CBF only fell to 43 +/- 3 ml x min(-1) x 100 g(-1) at 1 h of reperfusion. Similar observations were made in H-I/R animals. These data suggest that an elevated CSF NOC/oFQ concentration and altered vascular responsiveness to this opioid contribute to reductions in CBF observed after either I/R or H-I/R.  相似文献   

3.
Nociceptin/orphanin FQ(14-17) (N/OFQ(14-17)) is one of the major fragments that are released from N/OFQ, an endogenous ligand for the opioid receptor like-1 (ORL-1) receptor by endopeptidase 24.11. In the present study, we determined the pharmacological profiles of N/OFQ(14-17) on pain-related behavioral responses in the mouse. Intrathecal (i.t.) administration of N/OFQ(14-17) (5-160 pmol) evoked pain-related behaviors, and these behavioral responses were reduced by i.t. co-administration of an ORL-1 receptor antagonist, [Nphe(1)]N/OFQ(1-13)NH2 (4 pmol). However, in the ligand-binding receptor assay, N/OFQ(14-17) had no affinity for the ORL-1 receptor. Furthermore, i.t. pretreatment with an antiserum against N/OFQ (1:50) diminished the N/OFQ(14-17)-induced pain-related behaviors, suggesting that endogenous N/OFQ is involved in their expression. Therefore, N/OFQ(14-17)-induced pain-related behaviors may be mediated through the release of endogenous N/OFQ in the mouse spinal cord.  相似文献   

4.
Nociceptin/orphanin FQ (N/OFQ), an endogenous agonist of the opioid N/OFQ (NOP) receptor, increases food intake when administered centrally. As N/OFQ is part of a larger neural network that governs consummatory behavior, presumably its orexigenic properties stem from interplay with other neuropeptidergic components of the feeding-related circuitry. One such peptide may be the ligand of the melanocortin-3 and -4 receptors, alpha-melanocyte-stimulating hormone (alpha-MSH), which is known to inhibit food intake. The aim of the present study was to establish whether there is a functional "interaction" between N/OFQ and alpha-MSH in the regulation of feeding. By using double immunostaining for c-Fos and alpha-MSH, we found that intracerebroventricular (i.c.v.) injection of N/OFQ at a 10nmol dose that moderately prolongs deprivation-induced food intake in rats, decreases activation of alpha-MSH neurons involved in feeding termination. However, i.c.v. injections of alpha-MSH at doses previously established to reduce deprivation-induced feeding, do not decrease hyperphagia generated by N/OFQ in ad libitum-fed animals. Our results suggest that while alpha-MSH does not appear to modify the orexigenic response to N/OFQ in sated rats, the NOP receptor ligand promotes a decrease in activation of neurons synthesizing the anorexigenic peptide, alpha-MSH, at the time of re-feeding. Thus, to some degree, the stimulatory effect of N/OFQ on consumption may arise from this peptide's inhibitory influence on activity of anorexigenic pathways containing alpha-MSH.  相似文献   

5.
6.
The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor, has been shown to play a prominent role in the regulation of several biological functions such as pain and stress. Here we describe the isolation and characterization of N/OFQ binding biostable RNA aptamers (Spiegelmers) using a mirror-image in vitro selection approach. Spiegelmers are L-enantiomeric oligonucleotide ligands that display high affinity and specificity to their targets and high resistance to enzymatic degradation compared to D-oligonucleotides. A representative Spiegelmer from the selections performed was size-minimized to two distinct sequences capable of high affinity binding to N/OFQ. The Spiegelmers were shown to antagonize binding of N/OFQ to the ORL1 receptor in a binding-competition assay. The calculated IC(50) values for the Spiegelmers NOX 2149 and NOX 2137a/b were 110 nM and 330 nM, respectively. The competitive antagonistic properties of these Spiegelmers were further demonstrated by their effective and specific inhibition of G-protein activation in two additional models. The Spiegelmers antagonized the N/OFQ-induced GTPgammaS incorporation into cell membranes of a CHO-K1 cell line expressing the human ORL1 receptor. In oocytes from Xenopus laevis, NOX 2149 showed an antagonistic effect to the N/OFQ-ORL 1 receptor system that was functionally coupled with G-protein-regulated inwardly rectifying K(+) channels.  相似文献   

7.
Corboz MR  Fernandez X  Egan RW  Hey JA 《Life sciences》2001,69(10):1203-1211
In vivo studies were conducted in the guinea-pig to investigate the activity of the selective ORL1 receptor agonist nociceptin/orphanin FQ against capsaicin-induced bronchoconstriction, a response mediated by the release of tachykinins from pulmonary sensory nerves. Anesthetized guinea-pigs were ventilated with a rodent ventilator and placed in a whole-body plethysmograph, and pulmonary resistance (R(L)) and dynamic lung compliance (C(Dyn)) were monitored. Intravenous administration of nociceptin/orphanin FQ (0.3 mg/kg) inhibited the capsaicin-induced bronchoconstriction. The new nonpeptide ORL1 receptor antagonist 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397) administered intravenously (1 mg/kg) produced a significant blockade of the inhibitory effect of nociceptin/orphanin FQ (0.3 mg/kg) on capsaicin-induced bronchoconstriction, whereas the nonselective opioid receptor antagonist naloxone (1 mg/kg) had no effect. Nociceptin/orphanin FQ (0.3 mg/kg) did not affect the bronchoconstriction induced exogenously by the tachykinin NK2 receptor agonist [beta-ala8]-neurokinin A (4-10). We conclude that nociceptin inhibits in vivo capsaicin-evoked tachykinin release from sensory nerve terminals in the guinea-pig by a prejunctional mechanism. This inhibitory action does not involve activation of opioid receptors.  相似文献   

8.
In the present study we describe the in vitro pharmacological characterization of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) ligand Ac-RYYRWK-NH2 and the synthesis and biological evaluation of 13 Trp5 substituted Ac-RYYRWK-NH2 analogs. Results indicate that Ac-RYYRWK-NH2 behaves as a highly potent and selective partial agonist at the NOP receptors and that the whole indole moiety of the Trp5 side chain is not required, being a phenyl-ethyl side chain already sufficient for maintaining high potency.  相似文献   

9.
The hexapeptide acetyl-RYYRIK-amide (Ac-RYYRIK-NH(2)) has recently been reported to act as partial agonist of the nociceptin/orphanin FQ (noc/OFQ) receptor expressed in CHO cells. In addition, this peptide acts as a competitive antagonist of noc/OFQ-stimulated GTPgamma(35)S binding in rat brain membranes as well as of the noc/OFQ-evoked chronotropic effect in rat cardiomyocytes. In contrast to this antagonism, in the present study, Ac-RYYRIK-NH(2) was found to behave as an agonist at noc/OFQ receptors, affecting spontaneous locomotor activity. When administered intracerebroventricularly (i.c.v.), noc/OFQ and Ac-RYYRIK-NH(2) inhibited spontaneous locomotor activity in mice with ID(50) of 1.1 and 0.07 nmol, respectively. Co-administration of both peptides lead to additive effects. The higher potency of Ac-RYYRIK-NH(2) could not be clearly explained by differential metabolism, because in vivo microdialysis in rat striatum and in vitro metabolic inactivation by rat and mouse brain membranes revealed extensive inactivation of both peptides. Similar to Ac-RYYRIK-NH(2), [Phe(1)psi(CH(2)-NH)Gly(2)]noc/OFQ(1-13)-NH(2) ([F/G]NC(1-13)NH(2)) inhibited the noc/OFQ-stimulated GTPgamma(35)S binding in rat brain membranes (Schild constant 3.83 nM) and mouse brain sections, although several reports have shown that this peptide exhibits agonist activity of noc/OFQ in the CNS. Changes in the optimum conditions of the in vitro assay for GTP binding increased low partial agonism of Ac-RYYRIK-NH(2) in GTP binding response. To explain the discrepancy between the in vitro antagonism of G protein coupling of the noc/OFQ receptor and in vivo agonism of Ac-RYYRIK-NH(2) and of [F/G]NC(1-13)NH(2), it is suggested that low partial agonism of receptor/G protein coupling in native systems may be sufficient to evoke full biologic responses. The extent of partial agonism for GTP binding and of coupling reserve may vary in different systems, thus explaining why [F/G]NC(1-13)NH(2) and Ac-RYYRIK-NH(2) were reported to exhibit antagonist, partial agonist, or even full agonist properties, depending on the system studied.  相似文献   

10.
Pan Z  Hirakawa N  Fields HL 《Neuron》2000,26(2):515-522
Orphanin FQ/nociceptin (OFQ/N) and its receptor share substantial structural features and cellular actions with classic opioid peptides and receptors, but have distinct pharmacological profiles and behavioral effects. Currently there is an active debate about whether OFQ/N produces hyperalgesia or analgesia. Using a well-defined brainstem pain-modulating circuit, we show that OFQ/N can cause either an apparent hyperalgesia by antagonizing mu opioid-induced analgesia or a net analgesic effect by reducing the hyperalgesia during opioid abstinence. It presumably produces these two opposite actions by inhibiting two distinct groups of neurons whose activation mediates the two effects of opioid administration. OFQ/N antagonism of the hyperalgesia may have significance for the treatment of opioid withdrawal and sensitized pain.  相似文献   

11.
The nociceptin/orphanin FQ receptor (NOP) has been implicated in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have a great potential to be developed into anxiolytics. However, the crystal structure of NOP is still not available. In the present work, both structure-based and ligand-based modeling methods have been used to achieve a comprehensive understanding on 67N-substituted spiropiperidine analogues as NOP agonists. The comparative molecular-field analysis method was performed to formulate a reasonable 3D-QSAR model (cross-validated coefficient q(2)=0.819 and conventional r(2)=0.950), whose robustness and predictability were further verified by leave-eight-out, Y-randomization, and external test-set validations. The excellent performance of CoMFA to the affinity differences among these compounds was attributed to the contributions of electrostatic/hydrogen-bonding and steric/hydrophobic interactions, which was supported by the Surflex-Dock and CDOCKER molecular-docking simulations based on the 3D model of NOP built by the homology modeling method. The CoMFA contour maps and the molecular docking simulations were integrated to propose a binding mode for the spiropiperidine analogues at the binding site of NOP.  相似文献   

12.
We have studied the effects of naloxone benzoylhydrazone (NalBzoH) at recombinant human OP4 receptors expressed in Chinese hamster ovary (CHO) cells (CHOhOP4) and native OP4 sites in isolated tissues from various species. In CHOhOP4 membranes, nociceptin (NC) and NalBzoH displaced [125I]Tyr14-NC with pKi values of 10.1 and 7.3. In the presence of 100 microM GDP, NC stimulated GTPgamma35S binding (pEC50 = 8.5). NalBzoH was ineffective but antagonized the effects of NC (pA2 = 6.9). At 5 microM GDP, there was an increase in potency (pEC50 = 9.3) and efficacy (4.3-fold) of NC. NalBzOH was a partial agonist (pEC50 = 7.0, Emax = 13% relative to NC). In CHOhOP4 cells, NC and NalBzoH inhibited cAMP formation with pEC50 and Emax values of 9.8 and 100% and 6.0 and 44%, respectively. In the rat vas deferens, NalBzoH (10 microM) did not modify electrically induced twitches but competitively antagonized the inhibitory action of NC (pA2 = 6.2). In the mouse vas deferens (mVD) and guinea pig ileum (gpI), NalBzoH inhibited twitches with pEC50 and Emax values of 7.6 and 78% and 8.5 and 77%, respectively. The effect of 3 microM NalBzoH was fully inhibited by 3 microM naloxone in mVD and 30 microM in gpI. Under these conditions, NalBzoH antagonized the actions of NC in both preparations with pA2 values of 6.3 and 6.8, respectively. Collectively, these data demonstrate that NalBzoH is a nonselective OP4 ligand with system-dependent behaviour.  相似文献   

13.
Okuda-Ashitaka E  Ito S 《Peptides》2000,21(7):1101-1109
We identified a novel neuropeptide and named it "nocistatin." Its presence was expected by analysis of the precursor for the neuropeptide nociceptin or orphanin FQ (Noc/OFQ), previously identified as an endogenous ligand for the orphan opioid receptor-like receptor. The precursor prepronociceptin/orphanin FQ (ppNoc/OFQ) comprises at least two bioactive peptides, nocistatin and Noc/OFQ. Noc/OFQ is involved in a broad range of pharmacological actions in various tissues from the central nervous system to the periphery. In pain transmission, Noc/OFQ is reported to have different effects including nociception, no effect, and analgesia, depending on the animal species tested, doses, route of administration, and so on. We found that intrathecal administration of Noc/OFQ induced pain responses including allodynia and hyperalgesia. Simultaneous administration of nocistatin blocked the allodynia and hyperalgesia induced by Noc/OFQ, whereas anti-nocistatin antibody decreased the threshold for the Noc/OFQ-induced allodynia. The endogenous heptadecapeptide nocistatin was isolated from bovine brains and recently identified in mouse, rat, and human brain and in human cerebrospinal fluid. Although human, rat and mouse ppNoc/OFQ produced larger respective counterparts with 30, 35, and 41 amino acid residues, all peptides showed the antinociceptive activity. This activity was ascribed to the carboxyl-terminal hexapeptide of nocistatin, Glu-Gln-Lys-Gln-Leu-Gln, which is conserved beyond species. Nocistatin also attenuated the allodynia and hyperalgesia evoked by prostaglandin E(2) and the inflammatory hyperalgesia induced by formalin or carrageenan/kaolin, and reversed the Noc/OFQ-induced inhibition of morphine analgesia at picogram doses. Furthermore, nocistatin counteracted the impairment of learning and memory induced by Noc/OFQ or scopolamine. Nocistatin is widely present in the spinal cord and brain. Although nocistatin did not bind to the Noc/OFQ receptor, it bound to the membrane of mouse brain and spinal cord with a high affinity. Nocistatin is a novel bioactive peptide produced from the same precursor as Noc/OFQ, and it plays important roles in the regulation of pain transmission and learning and memory processes in the central nervous system.  相似文献   

14.
In the course of establishing a reliable and reproducible binding assay for the orphanin FQ/nociceptin (OFQ/N) ligand-receptor system we used reversed phase-high-performance liquid chromatography (HPLC) (RP-HPLC) to monitor the integrity of [(3)H]OFQ/N obtained from three different manufacturers. This means of analysis revealed that the stability of [(3)H]OFQ/N during storage varied considerably depending on the manufacturer. Furthermore, the integrity of [(3)H]OFQ/N was significantly compromised in the presence of COS-7 cell membranes. Interestingly, if the peptide was added to COS-7 membranes after they had been exposed to low pH it remained intact, suggesting that the peptide's breakdown during binding is, in part, enzymatically mediated. Although a variety of protease inhibitors were tested, none proved completely effective at protecting the tritiated peptide. The intention of the studies presented here was to evaluate OFQ/N binding components, namely the available [(3)H]OFQ/N ligands, in an effort to standardize the binding conditions for this receptor ligand system. Consequently, this study underscores the importance of monitoring the integrity of the trace ligand being used in a given binding assay.  相似文献   

15.
Kapusta DR 《Peptides》2000,21(7):1081-1099
Orphanin FQ/Nociceptin (OFQ/N) is a peptide whose structure resembles that of the endogenous opioid peptides (endorphins). OFQ/N and its receptor are distributed in neural tissue and brain regions involved in the regulation of pituitary hormone release. Functional studies have shown that this peptide evokes a unique pattern of cardiovascular and renal excretory responses. This review will focus on the neural and humoral effects of OFQ/N and how this peptide may participate in the regulation of cardiovascular and renal function.  相似文献   

16.
Branched peptides have been found to be useful in several research fields however their synthesis and purification is complicated. Here we present a novel and facile synthesis of tetra branched derivatives of nociceptin/orphanin FQ (N/OFQ). Three N/OFQ tetra branched derivatives were prepared using novel cores (PWT1, PWT2 and PWT3) containing a maleimido moiety. [Cys18]N/OFQ-NH2 was linked to the cores via thiol-Michael reaction characterized by high yield and purity of the desired final product. In the electrically stimulated mouse vas deferens PWT-N/OFQ derivatives mimicked the inhibitory action of the natural sequence showing similar maximal effects and 3 fold higher potencies. The NOP selective antagonist SB-612111 antagonized the effects of N/OFQ and PWT derivatives with similar pKB values (8.02–8.48). In vivo after supraspinal administration PWT2-N/OFQ stimulated food intake in mice mimicking the action of N/OFQ. Compared to the natural peptide PWT2-N/OFQ was 40 fold more potent and elicited larger effects. These findings suggest that the PWT chemical strategy can be successfully applied to biologically active peptides to generate, with unprecedented high purity and yield, tetra branched derivatives displaying an in vitro pharmacological profile similar to that of the natural sequence associated, in vivo, to increased potency and effectiveness.  相似文献   

17.
Joseph T  Lee TL  Li C  Siau C  Nishiuchi Y  Kimura T  Tachibana S 《Peptides》2007,28(7):1433-1440
Neuropeptides nociceptin/orphanin FQ (N/OFQ) and nocistatin (NST) are related to pain modulation. The amounts of these peptides and their precursor protein, prepronociceptin (ppN/OFQ) in the brain, spinal cord and serum samples of rats with partial sciatic nerve ligation (PSNL) were compared with those in na?ve rats using radioimmunoassay (RIA). There was a significant rise in the levels of ppN/OFQ, N/OFQ and NST in the brains of PSNL rats. Their spinal cords showed significantly increased ppN/OFQ and NST levels but no change in N/OFQ levels. The PSNL rats also had increased serum NST (statistically significant) and N/OFQ (statistically insignificant) with decreased ppN/OFQ suggesting important roles of these peptides in neuropathic pain mechanism.  相似文献   

18.
The neuropeptide nociceptin/orphanin FQ (N/OFQ) has been suggested to play a facilitatory role in kainate seizure expression. Furthermore, mRNA levels for the N/OFQ precursor are increased following kainate seizures, while its receptor (NOP) density is decreased. These data suggest increased N/OFQ release. To obtain direct evidence that this is the case, we have developed a microdialysis technique, coupled with a sensitive radioimmunoassay, that allows measurement of N/OFQ release from the hippocampus and thalamus of awake, freely moving animals. In both these brain areas, the spontaneous N/OFQ efflux decreased by approximately 50% and 65% when Ca2+ was omitted and when tetrodotoxin was added to the perfusion medium, respectively. Perfusion of the dialysis probe with high K+ increased N/OFQ release (approximately threefold) in a Ca2+-dependent and tetrodotoxin-sensitive manner. Kainate seizures caused a twofold increase in N/OFQ release followed, within 3 h, by a return to baseline levels. Approximately 5 h after kainate, a late increase in N/OFQ release was observed. On the following day, when animals were having only low grade seizures, N/OFQ release was not significantly different from normal. These phenomena were observed with similar patterns in the hippocampus and in the thalamus. The present data indicate that acute limbic seizures are associated with increased N/OFQ release, which may prime the molecular changes described above, i.e. cause down-regulation of NOP receptors and activation of N/OFQ biosynthesis.  相似文献   

19.
ZP120 is a nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) ligand. In previous studies, the effects of ZP120 were found to be sensitive to J-113397 in mouse tissues while resistant to UFP-101 in rat tissues. The aim of this study was to further investigate the ZP120 pharmacological profile using mouse and rat preparations, J-113397 and UFP-101, as well as NOP receptor knockout (NOP(-/-)) mice. Electrically stimulated mouse and rat vas deferens were used to characterize the pharmacology of ZP120 in vitro. For in vivo studies the tail-withdrawal assay was performed in wild type (NOP(+/+)) and NOP knockout (NOP(-/-)) mice. In the mouse and rat vas deferens ZP120 mimicked the effects of N/OFQ showing higher potency but lower maximal effects. In both preparations, J-113397 antagonized N/OFQ and ZP120 effects showing similar pK(B) values ( approximately 7.8). UFP-101 antagonized the actions of N/OFQ (pK(B) values approximately 7.3) but did not modify the effects of ZP120. The inhibitory effects of N/OFQ and ZP120 were no longer evident in vas deferens tissues taken from NOP(-/-) mice. In NOP(+/+) mice subjected to the tail-withdrawal assay, ZP120 (1 nmol) mimicked the pronociceptive action of N/OFQ (10 nmol), producing longer lasting effects. The effects of both peptides were absent in NOP(-/-) animals. The NOP receptor ligand ZP120 is a high potency NOP selective partial agonist able to evoke long-lasting effects; its diverse antagonist sensitivity in comparison with N/OFQ may derive from different modality of binding to the NOP receptor.  相似文献   

20.
Although orphanin FQ/nociceptin (OFQ/N) receptors are a member of the opioid receptor family of receptors, they bind traditional opioids with very poor affinity. We now demonstrate that mu opioid receptors can physically associate with OFQ/N receptors, resulting in a complex with a unique binding selectivity profile. Immunoprecipitation of epitope-tagged OFQ/N receptors co-precipitates mu receptors. When the two receptors were co-expressed in CHO cells, [3H]OFQ/N retained its high binding affinity for its receptor. However, co-expression of the two receptors increased by up to 250-fold the affinity of a series of opioids in [3H]OFQ/N binding assays. This enhanced affinity was limited to agonists with high affinity for mu receptors. Selective kappa(1) and delta opioids did not lower binding. Despite the dramatic increase in affinity for the opioid agonists in co-expressing cells, the opioid antagonists naloxone and diprenorphine failed to compete [3H]OFQ/N binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号