首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Recently a candidate gene for the primary testis-determining factor (TDF) encoding a zinc finger protein (ZFY) has been cloned from the human Y chromosome. A highly homologous X-linked copy has also been identified. Using this human sequence it is possible to identify two Y loci, an X and an autosomal locus in the mouse (Zfy-1, Zfy-2, Zfx and Zfa, respectively). Suprisingly ZFY is more homologous to the mouse X and autosomal sequences than it is to either of the Y-linked loci. Both Zfy-1 and Zfy-2 are present in the Sxr region of the Y but Zfy-2 is absent in the Sxr deletion variant Sxrb (or Sxr") suggesting it is not necessary for male determination. Extensive backcross analyses map Zfa to mouse chromosome 10 and Zfx to a 5-cM interval between anonymous X probe MDXS120 and the tabby locus (Ta). We also show that the mouse androgen receptor locus (m-AR) believed to underlie the testicular feminization mutation (Tfm) shows complete linkage to Zfx. Comparative mapping indicates that in man these genes lie in separate conserved DNA segments.  相似文献   

3.
Summary We report the isolation and nucleotide sequence determination of clones derived from five ZFY-related zinc-finger genes from birds and mammals. These sequences are analyzed with reference to the previously published human genes, ZFX and ZFY, and mouse genes, Zfx, Zfa, Zfy-1, and Zfy-2. The analysis indicates that ZFY-related genes are highly conserved in birds and mammals, and that the rate of nucleotide substitution in the Y-linked genes is not as high as predicted. However, the mouse Zfy-1 and Zfy-2 genes are markedly divergent members of the ZFY gene family; we suggest this relates to X-inactivation of the mouse gene Zfx.  相似文献   

4.
Is ZFY the sex-determining gene on the human Y chromosome?   总被引:3,自引:0,他引:3  
The sex-determining region of the human Y chromosome contains a gene, ZFY, that encodes a zinc-finger protein. ZFY may prove to be the testis-determining factor. There is a closely related gene, ZFX, on the human X chromosome. In most species of placental mammals, we detect two ZFY-related loci: one on the Y chromosome and one on the X chromosome. However, there are four ZFY-homologous loci in mouse: Zfy-1 and Zfy-2 map to the sex-determining region of the mouse Y chromosome, Zfx is on the mouse X chromosome, and a fourth locus is autosomal.  相似文献   

5.
Recent chromosome walking experiments have identified a candidate gene (ZFY) for the testis-determining factor on the human Y chromosome (Page et al., 1987). We report here the regional assignments of the ZFY gene and related sequences in the human and the mouse. By in situ hybridization, we assigned ZFX and ZFY to human chromosome bands Xp21 and Yp11.3, respectively. Although the mouse harbors two Zfy genes, only one site at band A1 of its Y chromosome was significantly labeled. The mouse Zfx gene and the Zfa gene on chromosome 10 were assigned to bands XD and 10B5, respectively. These assignments of the ZFX gene in human and mouse add another marker to the conserved syntenic group for evaluating the evolutionary relationship of the human and mouse X chromosomes.  相似文献   

6.
7.
In order to obtain a genomic clone of Zfy-1 from a Y chromosome of Mus musculus domesticus (YDOM) origin, we cloned size-fractionated SJL/J DNA in EMBL-4 and selected colonies which hybridized to pDP1007, a human zinc finger Y clone. The specificity of the clone in hybridizations to mouse and human DNA and partial sequencing confirmed that the clone (subcloned as pGZfy1D) was of Zfy-1 origin. Studies on the expression during testicular development of mRNAs hybridizing to the clone suggested that the gene is expressed post-meiotically.  相似文献   

8.
9.
A comparative study of the last exon of the zinc finger genes Zfx, Zfy, and Zfa from species of mice in the genus Mus was conducted to assess the extent of gene-specific and chromosome-specific effects on the evolutionary patterns among related X-, Y-, and autosomal-linked genes. Phylogenetic analyses of 29 sequences from Zfx, Zfa, and Zfy from 10 taxa were performed to infer relatedness among the zinc finger loci, and codon-based maximum likelihood analyses were conducted to assess evolutionary pattern among genes. Five models of nucleotide sequence evolution were applied and compared using a likelihood ratio test. Estimates of nonsynonymous to synonymous changes (dN/dS) for these genes suggest that amino acid substitutions are occurring at a more rapid rate across the autosomal- and Y-specific lineages compared to the X-specific lineage, with the Y-specific lineage showing the highest rate under certain models. The data suggest the action of gene-specific effects on evolutionary pattern. In particular, Zfa and Zfy genes, both with presumed restricted expression, appear less functionally constrained relative to ubiquitously expressed Zfx. Slightly elevated dN/dS for Zfy genes in comparison to Zfa also suggest Y-specific effects.  相似文献   

10.
Wild populations of Akodon azarae comprise females with a karyotype indistinguishable from that of males. These individuals were formerly assumed to be Xx, the x being an X chromosome with a deletion of most of its long arm. By using a DNA probe derived from the testis-determining region of the human Y chromosome (comprising a candidate gene for the testis-determining factor, Y-linked zinc finger [ZFY]), we demonstrate that A. azarae gonosomally variant females are XY and not Xx. The ZFY sequences in A. azarae are amplified and located in two different families of EcoRI fragments derived from Y-chromosome DNA. No rearrangement or change in the state of methylation of ZFY or ZFX (X-linked zinc finger) sequences were found in XY females. We propose that sex reversal in A. azarae may be mediated by a gene or genes other than ZFX or ZFY.  相似文献   

11.
It is hypothesized that autosomal retroposons compensate for the loss of their inactivated essential X-chromosome progenitors during spermatogenesis. Here we test this Retroposon Compensatory Mechanism (RCM) hypothesis using the Zfy gene family. The mouse autosomal retroposon Zfa is expressed in testes at the same developmental time points at which Zfx levels decline, which correspond to the time of male sex chromosome inactivation, suggesting that Zfa may compensate for the loss of Zfx during spermatogenesis. We examined the effect of Zfa-targeted mutagenesis on spermatogenesis in three genetically distinct mouse strains. Surprisingly, Zfa knockout mice showed no detectable fertility, sperm count, or testes morphology defects. We therefore conclude that Zfa is not an essential gene for spermatogenesis and fertility. This surprising finding now challenges the RCM hypothesis at least for the Zfy gene family. It also forces us to reevaluate the original data underpinning the RCM hypothesis for this family and to propose alternative hypotheses.  相似文献   

12.
13.
ZFX基因同源序列在黄鳝基因组中的检出及其染色体定位   总被引:2,自引:0,他引:2  
以大熊猫锌指蛋白基因Zfx为探针 ,在黄鳝基因组DNA中检测到一条长约 9 5kb的杂交带。依据哺乳类和爬行类动物锌指蛋白基因 (ZFX/Zfc)编码第 7~ 13个锌指结构的DNA序列保守性设计引物 ,在黄鳝基因组DNA中仅扩增到一条 5 12bp的DNA片段。将此片段克隆至载体 pBS中 ,从雌性、雄性个体中分别挑选 4个含有插入片段的白色克隆进行测序。测序结果表明 ,这些克隆中插入片段的核苷酸序列一致。该DNA片段在核苷酸水平上与人类ZFX和ZFY分别具有 88%和 87%同源性 ,但其与美洲鳄鱼Zfc的同源性可达 90 % ,而在氨基酸水平上则分别存在 95 9%、95 9%和 93 5 %的同源性 (170个氨基酸 )。该基因命名为黄鳝锌指蛋白基因Zfa ,并运用FISH将其定位于黄鳝 1号染色体 ,距离着丝粒的相对位置为 6 0 1± 0 38。通过进一步研究证明 ,黄鳝 1号染色体上存在有真兽类哺乳动物X染色质同源的保守片段 ,该保守片段有可能就是哺乳动物X染色体起源和进化的原始物质基础之一。应用哺乳动物X染色体连锁的其他基因在鱼类开展染色体比较定位研究 ,将有望促进脊椎动物性染色体进化的深入研究  相似文献   

14.
Summary The divergence pattern of mammalian ZFY-related genes from human (ZFY and ZFX) and mouse (Zfy-1 and Zfx) was reexamined on the basis of nucleotide substitutions at the synonymous codon-alternating positions. It is possible to explain the unusual divergence pattern of the mammalian Y-linked ZF genes by interchromosomal gene conversion by X-linked ZF genes. Furthermore, the rates of evolution of mammalian X- and Y-linked ZF genes were shown to agree well with those expected from our model. Offprint requests to: T. Miyata  相似文献   

15.
The ZFY gene family in humans and mice   总被引:3,自引:0,他引:3  
For several years, ZFY (zinc finger gene on the Y chromosome) was considered the best candidate for the human testis-determining gene TDF. This gene and its close relatives have been intensely studied in the hope of understanding the molecular biology of sex determination, particularly in humans and mice. Now that there is overwhelming evidence that ZFY and TDF are distinct loci, we are left with a large body of data, and a question: what do these genes really do?  相似文献   

16.
A growing body of evidence suggests the involvement of sex chromosome genes in mammalian development. We report the cloning and characterization of the complete coding regions of the bovine Y chromosome ZFY and X chromosome ZFX genes, and partial coding regions of porcine and equine ZFX and ZFY genes. Bovine ZFY and ZFX are highly similar to each other and to ZFX and ZFY from other species. While bovine and human ZFY proteins are both 801 amino acids long, bovine ZFX is 5 amino acids shorter than human ZFX. Like in humans, both bovine ZFY and ZFX contain 13 zinc finger motifs and belong to the Krueppel family of C2H2-type zinc finger proteins. The internal exon-intron organization of the bovine, porcine and equine ZFX and ZFY genes has been determined and compared. Within this region, the exon lengths and the positions of the splice sites are conserved, further suggesting a high evolutionary conservation of the ZFX and ZFY genes. Additionally, new alternatively spliced forms of human ZFX have been identified.  相似文献   

17.
18.
19.
Summary The syndrome of 46,XX true hermaphroditism is a clinical condition in which both ovarian and testicular tissue are found in one individual. Both Mullerian and Wolffian structures are usually present, and external genitalia are often ambiguous. Two alternative mechanisms have been proposed to explain the development of testicular tissue in these subjects: (1) translocation of chromosomal material encoding the testicular determination factor (TDF) from the Y to the X chromosome or to an autosome, or (2) an autosomal dominant mutation that permits testicular determination in the absence of TDF. We have investigated five subjects with 46,XX true hermaphroditism. Four individuals had a normal 46,XX karyotype; one subject (307) had an apparent terminal deletion of the short arm of one X chromosome. Genomic DNA was isolated from these individuals and subjected to Southern blot analysis. Only subject 307 had Y chromosomal sequences that included the pseudoautosomal boundary, SRY (sex-determining region of Y), ZFY (Y gene encoding a zinc finger protein), and DXYS5 (an anonymous locus on the distal short arm of Y) but lacked sequences for DYZ5 (proximal short arm of Y) and for the long arm probes DYZ1 and DYZ2. The genomic DNA of the other four subjects lacked detectable Y chromosomal sequences when assayed either by Southern blotting or after polymerase chain reaction amplification. Our data demonstrate that 46,XX true hermaphroditism is a genetically heterogeneous condition, some subjects having TDF sequences but most not. The 46,XX subjects without SRY may have a mutation of an autosomal gene that permits testicular determination in the absence of TDF.  相似文献   

20.
A bird zinc-finger protein closely related to ZFY   总被引:3,自引:0,他引:3  
The ZFY gene is thought to reside in the "sex-determining" region of the mammalian Y chromosome and encodes a zinc-finger protein that may function in determining the sex of embryos. Although birds have a ZZ(male)/ZW(female) sex-determination system, they possess a gene, Zfb, that is highly homologous to ZFY. We used ZFY as a hybridization probe to clone the zinc-finger domain of the chicken Zfb gene. Chicken Zfb is widely transcribed in male and female tissues and encodes a protein with a zinc-finger domain that is 93% identical in amino acid sequence to the zinc-finger domain of ZFY. Thus, the putative DNA-binding domains of the Zfb and ZFY proteins diverged little from a common ancestral protein that existed prior to birds and mammals, suggesting that the DNA binding site has been similarly conserved. The absence of sex differences in the hybridization patterns of Zfb raises the question of whether this gene is present on the Z/W sex chromosomes in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号