首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetaldehyde was previously shown to activate the alpha1(I) and alpha2(I) collagen promoters and to increase collagen production in activated stellate cells. Also, CCAAT/enhancer binding protein beta (C/EBPbeta) binds and activates the mouse alpha1(I) collagen promoter. This study investigates the role of C/EBPbeta in mediating the activation of the alpha1(I) collagen promoter by acetaldehyde. Nuclear extracts isolated from cultured activated rat hepatic stellate cells formed four protein-DNA complexes on electrophoretic mobility shift assay with an oligonucleotide including the C/EBP binding site between -365 and -335 in the alpha1(I) collagen promoter. The four complexes were identified to represent C/EBPbeta binding to the oligonucleotide by supershift with C/EBPbeta antibody. The principal C/EBP isoform found in the nuclear extracts from stellate cells was C/EBPbeta, with very low amounts of C/EBPalpha detected. Acetaldehyde (200 microM) increased C/EBPbeta protein in stellate nuclear extracts, increased its binding to the promoter, and activated the alpha1(I) collagen promoter in transfected stellate cells. Mutation of the C/EBPbeta binding site markedly decreased nuclear protein binding. A transfected promoter, mutated at the C/EBP binding site, had decreased basal activity, was not activated by acetaldehyde, and was not activated when cotransfected with a C/EBPbeta expression vector. This study shows that C/EBPbeta is the predominant C/EBP isoform found in activated stellate cells and that increased C/EBPbeta protein and C/EBPbeta binding to a proximal C/EBP binding site in the promoter mediates the activating effect of acetaldehyde.  相似文献   

2.
Acetaldehyde alone and retinoic acid alone have been shown to increase and decrease, respectively, collagen production by stellate cells in culture. In this study the effects of retinoic acid on alpha(1)(I) and alpha(2)(I) collagen expression and its influence on the enhancing effects of acetaldehyde were determined. Retinoic acid decreased the activation of the alpha(2)(I) collagen promoter and decreased the message of alpha(2)(I) collagen in cultured stellate cells, but had no effect on either the activation of the alpha(1)(I) collagen promoter or on the alpha(1)(I) collagen message. This depressant effect of retinoic acid was also evident in the transfected alpha(2)(I) collagen promoter mutated at the retinoic acid response element (RARE). The activation of the alpha(2)(I) collagen promoter by acetaldehyde was not decreased significantly by retinoic acid, but was suppressed by the retinoic acid receptor (RAR) selective retinoid SRI-6751-84. Retinoic acid, however, decreased the acetaldehyde-induced enhancement of the alpha(1)(I) and alpha(2)(I) collagen messages. Acetaldehyde also resulted in a decrease in RAR beta message and RARbeta protein. This study shows that retinoic acid depresses alpha(2)(I) collagen gene expression but that this effect is less pronounced when the expression of this collagen is enhanced by acetaldehyde, which also decreases RARbeta message and protein. Furthermore, the action of retinoic acid in inhibiting alpha(2)(I) collagen gene expression occurs at sites other than the RARE site.  相似文献   

3.
The CCAAT/enhancer binding protein beta (C/EBPbeta) was previously shown to bind to the alpha(1)(I) collagen promoter at -365 to -335 (site 1) and to activate it. Acetaldehyde also activates the promoter, and this effect is mediated by an increase in stellate-cell C/EBPbeta protein and C/EBPbeta binding. The present study identified two additional distal sites (sites 2 and 3) of binding of C/EBPbeta, in the nuclear extracts of stellate cells, at -399 to -370 and -623 to -592 in the alpha(1)(I) collagen promoter. The C/EBPbeta protein activates the promoter at all three sites. Acetaldehyde increases C/EBPbeta binding to all three sites. Activation by acetaldehyde is abrogated in the transfected promoter mutated at either site 1 or site 3 but is not affected by mutation at site 2. Binding of the 20-kDa C/EBPbeta isoform (p20C/EBPbeta), which is eliminated by mutation at the distal site 3 of C/EBP binding, is necessary for the activation by acetaldehyde of the alpha(1)(I) collagen promoter.  相似文献   

4.
Hepatic fibrosis is due to the increased synthesis and deposition of type I collagen. Acetaldehyde activates type I collagen promoters. Nuclear factor kappaB (NF-kappaB) was previously shown to inhibit expression of murine alpha(1)(I) and human alpha(2)(I) collagen promoters. The present study identifies binding of NF-kappaB, present in nuclear extracts of stellate cells, to a region between -553 and -537 of the murine alpha(2)(I) collagen promoter. The NF-kappaB (p65) expression vector inhibited promoter activity. Mutation of the promoter at the NF-kappaB-binding site increased basal promoter activity and abrogated the activating and inhibitory effects of transforming growth factor beta and tumor necrosis factor alpha, respectively, on promoter activity. Acetaldehyde increased IkappaB-alpha kinase activity and phosphorylated IkappaB-alpha, NF-kappaB nuclear protein, and its binding to the promoter. However, the activating effect of acetaldehyde was not affected by the mutation of the promoter. In conclusion, although acetaldehyde increases the binding of NF-kappaB to the murine alpha(2)(I) collagen promoter, this binding does not mediate the activating effect of acetaldehyde on promoter activity. The effects of acetaldehyde in increasing the translocation of NF-kappaB to the nucleus with increased DNA binding activity may be important in mediating the effects of acetaldehyde on other genes.  相似文献   

5.
6.
Leptin increases human alpha1 (I) collagen mRNA and type I collagen production and enhances hepatic fibrosis in animal models of hepatic fibrosis. These effects of leptin on fibrogenesis may be mediated by TGFbeta1, since leptin increases the TGFbeta type II receptor and augments the effect of TGFbeta1 on collagen production by stellate cells. In this study, leptin increased the activity of the human alpha1 (I) collagen promoter in transfected stellate cells. Leptin did not further enhance the activation of the promoter induced by TGFbeta1. Leptin had no effects on the transfected TGFbeta-responsive p3TP-LUX plasmid, which contains 3 CAGA elements that are essential and sufficient for the induction by TGFbeta. Leptin did not increase significantly the binding of proteins to two TGFbeta1 responsive elements in the human alpha1 (I) collagen promoter. In conclusion, this study shows that leptin activates the alpha1 (I) collagen gene and that this effect is not mediated by TGFbeta responsive elements.  相似文献   

7.
Hepatic stellate cells (HSC) differ in their phenotype depending on the initiation and progression of their activation. Our hypothesis was that different mechanisms govern type I collagen synthesis depending on stage of HSC activation. We investigated the role of alpha(5)beta(1)-integrin as a regulator of type I collagen gene COL1A1 expression in primary and passaged HSC cultures using transgenic mouse containing type I collagen gene COL1A1 promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene. The alpha(5)beta(1) protein levels increased during the activation and were highest in day 6 primary cultures but decreased in passaged HSC. CAT activity, reflecting COL1A1 expression, was upregulated by alpha(5)beta(1)-integrin. Inhibition of alpha(5)beta(1)-integrin by echistatin and blocking antibody resulted in reduced transgene activity only in early primary cultures (compared with the control, 53.3 +/- 12% echistatin and 58.8 +/- 7% blocking antibody, respectively, P < 0.05). Treatment of passaged HSC with either echistatin or blocking antibody had no effect. Fibronectin, an alpha(5)beta(1)-integrin ligand, increased transgene activity in primary (210 +/- 33%, P < 0.05) but not in passaged HSC cultures (119 +/- 8%). This alpha(5)beta(1)-integrin effect appears to be at least in part mediated by CCAAT enhancer binding protein-beta (C/EBPbeta), because fibronectin increased and alpha(5)-gene silencing by small interfering RNA decreased C/EBPbeta levels. In addition, C/EBPbeta knockout mice showed reduced type I collagen synthesis compared with wild-type littermates. Therefore alpha(5)beta(1)-integrin is an important regulator of type I collagen production in early primary HSC cultures but appears to have no direct role once the HSC are fully activated.  相似文献   

8.
9.
To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.  相似文献   

10.
11.
12.
Retinoic acid (RA) suppresses alpha 2(I) collagen expression in hepatic stellate cells through the binding of retinoic acid receptor beta (RAR beta) and retinoid X receptor alpha (RXR alpha) to RA response elements (RAREs) in the alpha 2(I) collagen promoter. This study determined the influence of coactivators and corepressors to RAR beta and RXR alpha on the regulation of the alpha 2(I) collagen promoter. The coactivators, steroid receptor coactivator-1 (SRC-1) and growth hormone receptor interacting protein-1 (GRIP-1), enhanced, while the nuclear receptor corepressor (N-CoR) abolished the inhibitory effect of RAR beta and RXR alpha on the promoter activity. In the presence of RA, the coactivators SRC-1 and GRIP-1 formed complexes with RAR beta and RXR alpha which are bound to an oligonucleotide specifying a RARE site in the promoter. In conclusion, this study shows that in the presence of retinoic acid, the coactivators SRC-1 and GRIP-1 augment, while the corepressor N-CoR abolishes, the suppressive effects of RAR beta and RXR alpha on alpha 2(I) collagen promoter activity.  相似文献   

13.
14.
15.
16.
17.
Retinoic acid decreases collagen production by hepatic stellate cells. This study investigated the effects of retinoic acid receptor beta (RARbeta) and retinoid X receptor alpha (RXRalpha) on the regulation of the alpha(2)(I) collagen promoter. Retinoic acid and the RARbeta and RXRalpha expression vectors suppressed the promoter in transfected stellate cells with maximal suppression obtained when combined. Mutation of the retinoic acid response element (RARE) at -879 to -874 (site 1) enhanced promoter activity and diminished but did not eliminate the suppression by RARbeta and RXRalpha. Mutation of another RARE site (site 2), at -930 to -911, resulted in low activity that was inhibited by retinoic acid. Mutation of the AP-2-binding site enhanced promoter activity that was inhibited by retinoic acid. This study shows that the suppressive effect of retinoic acid on the promoter is maximal with a combination of RARbeta and RXRalpha and occurs at more than one RARE site. The effect of retinoic acid is not mediated by AP-2.  相似文献   

18.
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of the 4-hydroxyproline residues that are essential for the generation of triple helical collagen molecules. The vertebrate C-P4Hs I, II, and III are [alpha(I)]2beta2, [alpha(II)]2beta2, and [alpha(III)]2beta2 tetramers with identical beta subunits. We generated mice with targeted inactivation of the P4ha1 gene encoding the catalytic alpha subunit of C-P4H I to analyze its specific functions. The null mice died after E10.5, showing an overall developmental delay and a dilated endoplasmic reticulum in their cells. The capillary walls were frequently ruptured, but the capillary density remained unchanged. The C-P4H activity level in the null embryos and fibroblasts cultured from them was 20% of that in the wild type, being evidently due to the other two isoenzymes. Collagen IV immunofluorescence was almost absent in the basement membranes of the null embryos, and electron microscopy revealed disrupted basement membranes, while immunoelectron microscopy showed a lack of collagen IV in them. The amount of soluble collagen IV was increased in the null embryos and cultured null fibroblasts, indicating a lack of assembly of collagen IV molecules into insoluble structures, probably due to their underhydroxylation and hence abnormal conformation. In contrast, the null embryos had collagen I and III fibrils with a typical cross-striation pattern but slightly increased diameters, and the null fibroblasts secreted fibril-forming collagens, although less efficiently than wild-type cells. The primary cause of death of the null embryos was thus most likely an abnormal assembly of collagen IV.  相似文献   

19.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

20.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号