首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of lipid composition on the rate of cholesterol movement between cellular membranes is investigated using lipid vesicles. The separation of donor and acceptor vesicles required for rate measurement is achieved by differential centrifugation so that the lipid effect can be quantified in the absence of a charged lipid generally used for ion-exchange-based separation. The rate of cholesterol transfer from small unilamellar vesicles (SUVs) containing 50 mol% cholesterol to a common large unilamellar vesicle (LUV) acceptor containing 20 mol% cholesterol decreases with increasing mol% of sphingomyelin in the SUVs, while phosphatidylethanolamine and phosphatidylserine have no appreciable effect at physiologically relevant levels. There is a large decrease in rate when phosphatidylethanolamine constitutes 50 mol% of donor phospholipids. Interestingly, gangliosides which have the same hydrocarbon moiety as sphingomyelin exert an opposite effect. The effect of spingomyelin seems to be mediated by its ability to decrease the fluidity of the lipid matrix, while that of gangliosides may arise from a weakening of phosphatidylcholine-cholesterol interactions or from a more favourable (less polar) microenvironment for the desorption of cholesterol provided by the head-group interactions involving sugar residues. If the effect of asymmetric transbilayer distribution of lipids is taken into consideration, the observed composition-dependent rate changes could partly account for the large difference in the rates of cholesterol desorption from the inner and outer layers of plasma membrane. Such rate differences may be responsible for an unequal steady-state distribution of cholesterol among various cellular membranes and lipoproteins.  相似文献   

2.
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to 'lipid raft' like membranes, suggesting that the protein could be involved in raft assembly.  相似文献   

3.
Cells acquire cholesterol either by de novo synthesis in the endoplasmic reticulum or by internalization of cholesterol-containing lipoproteins, particularly low density lipoprotein (LDL), via receptor-mediated endocytosis. The inherited disorder Niemann-Pick type C (NPC), in which abnormal LDL-cholesterol trafficking from the endo/lysosomal compartment leads to substantial cholesterol and glycolipid accumulation in lysosomes, is caused by defects in either of two genes that encode for proteins designated as NPC1 and NPC2. NPC2 is a small intralysosomal protein that has been characterized biochemically as a cholesterol binding protein. We determined the rate and mechanism by which NPC2 delivers cholesterol to model phospholipid membranes. A fluorescence dequenching assay was used to monitor the kinetics of cholesterol transfer from the protein to membranes. The endogenous tryptophan fluorescence of the NPC2 was quenched upon binding of cholesterol, and the subsequent addition of acceptor vesicles resulted in dequenching of the tryptophan signal, enabling the monitoring of cholesterol transfer to membranes. The rates of cholesterol transfer were evaluated as a function of acceptor vesicle concentration, acceptor vesicle phospholipid headgroup composition, and aqueous phase properties. The results suggest that NPC2 rapidly transports cholesterol to phospholipid vesicles via a collisional mechanism which involves a direct interaction with the acceptor membrane. Transfer of cholesterol to membranes is faster in an acidic environment and is greatly enhanced by the presence of the unique lysosomal/late endosomal phospholipid lyso-bisphosphatidic acid (LBPA) (also known as bismonoacylglycerol phosphate). Finally, we found that the rate of transfer of cholesterol from vesicles to NPC2 was dramatically increased by the presence of lyso-bisphosphatidic acid in the donor vesicles. These results support a role for the NPC2 protein in the egress of LDL derived cholesterol out of the endosomal/lysosomal compartment.  相似文献   

4.
M Masserini  E Freire 《Biochemistry》1987,26(1):237-242
The transfer of ganglioside GM1 from micelles to membranes and between different membrane populations has been examined by using a pyrene fatty acid derivative of the ganglioside. The transfer of gangliosides from micelles to membranes depends on the physical state as well as the molecular composition of the acceptor vesicles. At 30 degrees C, the transfer of micellar gangliosides to dipalmitoylphosphatidylcholine (DPPC) large unilameller vesicles (Tm = 41.3 degrees C) is characterized by a rate constant of 0.01 min-1; at 48 degrees C, however, the rate constant is 0.11 min-1. Below the phase transition temperature, the activation energy is 25 kcal/mol whereas above the phase transition it is 17 kcal/mol. Similar experiments performed with synaptic plasma membranes yielded a rate constant of 0.05 min-1 at 37 degrees C. The rate of transfer of ganglioside molecules, asymmetrically located on the outer layer of donor vesicles, to acceptor vesicles lacking ganglioside depends on the physical state of both the donor and acceptor vesicles. For the transfer of ganglioside from DPPC (donor) vesicles to dimyristoylphosphatidylcholine (DMPC) (acceptor) vesicles, the rates were essentially zero at 15 degrees C in which both vesicle populations were in the gel phase, 0.008 min-1 at 30 degrees C in which DPPC is in the gel phase and DMPC is in the fluid phase, and 0.031 min-1 at 48 degrees C in which both vesicle populations are in the fluid phase. The transfer of ganglioside from DPPC vesicles to synaptic plasma membranes was also dependent on the physical state of the donor vesicles and showed an inflection point at the phase transition temperature of DPPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

6.
Biological membrane is crucial for the function, stability and folding of membrane proteins. By studying the stability and folding kinetics of bacteriorhodopsin (bR) in lipid vesicles with different sizes, here we report the influence of membrane curvature (vesicle size) on the stability and folding kinetics of bR. The results show that both the stability and folding kinetics of bR can be significantly changed when reconstituted into mimic membranes with different curvatures. The stability of bR decreases and unfolding rate of bR increases with the growth of vesicle size, i.e. decrease of membrane curvature. Our results suggest that it is possible to regulate the properties of membrane proteins by changing the curvature of membranes.  相似文献   

7.
The steroidogenic acute regulatory protein (StAR) mediates the acute stimulation of steroid synthesis by tropic hormones in steroidogenic cells. StAR interacts with the outer mitochondrial membrane and facilitates the rate-limiting transfer of cholesterol to the inner mitochondrial membrane where cytochrome P-450scc converts this cholesterol into pregnenolone. We tested the ability of N-62 StAR to transfer cholesterol from donor vesicles containing cholesterol but no cytochrome P-450scc to acceptor vesicles containing P-450scc but no cholesterol, using P-450scc activity as a reporter of the cholesterol content of synthetic phospholipid vesicles. N-62 StAR stimulated P-450scc activity in acceptor vesicles 5-10-fold following the addition of donor vesicles. Transfer of cholesterol to acceptor vesicles was rapid and sufficient to maintain a linear rate of pregnenolone synthesis for 10 min. The effect of N-62 StAR in stimulating P-450scc activity was specific for cholesterol transfer and was not due to vesicle fusion or P-450scc exchange between vesicles. Maximum stimulation of P-450scc activity in acceptor vesicles required preincubation of N-62 StAR with phospholipid vesicles prior to adding donor vesicles. The amount of N-62 StAR causing half-maximum stimulation of P-450scc activity in acceptor vesicles was 1.9 microm. Half-maximum stimulation required more than a 10-fold higher concentration of R182L N-62 StAR, a mutant associated with congenital lipoid adrenal hyperplasia. N-62 StAR-mediated transfer of cholesterol between vesicles showed low dependence on the cholesterol concentration in the donor vesicles. Thus StAR can transfer cholesterol between synthetic membranes without other protein components found in mitochondria.  相似文献   

8.
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to ‘lipid raft’ like membranes, suggesting that the protein could be involved in raft assembly.  相似文献   

9.
The ability of human plasma phospholipid transfer protein to transfer L-alpha-[14C]dipalmitoylphosphatidylcholine (DPPC) from donor vesicles to acceptor high-density lipoproteins (HDL) was examined, using vesicles of different compositions and sizes, and native or chemically modified HDL. Phosphatidylcholine (PC) transfer was inhibited by both cholesterol and sphingomyelin incorporation into egg-PC vesicles. On a molar basis, cholesterol inhibited transfer about 5-fold more than sphingomyelin; however, the effects of both lipids on the fluidity of the vesicle membrane (measured by fluorescence polarization of diphenylhexatriene), were closely correlated with their effects on PC transfer activity. Increase in vesicle size, and decrease in bilayer curvature, also reduced transfer: the largest vesicles had no transfer activity at all. Addition of phosphatidic acid up to 17 mol% had no effect on PC transfer. HDL apolipoprotein lysyl residues were chemically modified by reductive methylation, citraconylation, or acetoacetylation. The effects of modification on the apolipoprotein structure and on the HDL particle were assessed by intrinsic fluorescence measurements, SDS-polyacrylamide gel electrophoresis patterns, and gel chromatography. Only acetoacetylation significantly affected any of these parameters. The ability of HDL to accept PC in the absence of phospholipid transfer protein decreased with an increase in apolipoprotein negative charge while, in the presence of phospholipid transfer protein, the acceptor ability of HDL increased up to 1.7-fold with an initial increase in negative charge and then decreased, ultimately to zero, upon extensive modification.  相似文献   

10.
A lipid transfer protein that facilitates the transfer of glycolipids between donor and acceptor membranes has been investigated using a fluorescence resonance energy transfer assay. The glycolipid transfer protein (23-24 kDa, pI 9.0) catalyzes the high specificity transfer of lipids that have sugars beta-linked to either a ceramide or a diacylglycerol backbone, such as simple glycolipids and gangliosides, but not the transfer of phospholipids, cholesterol, or cholesterol esters. In this study, we examined the effect of different charged lipids on the rate of transfer of anthrylvinyl-labeled galactosylceramide (1 mol %) from a donor to acceptor vesicle population at neutral pH. Compared to neutral donor vesicle membranes, introduction of negatively charged lipid at 5 or 10 mol % into the donor vesicles significantly decreased the transfer rate. Introduction of the same amount of negative charge into the acceptor vesicle membrane did not impede the transfer rate as effectively. Also, positive charge in the donor vesicle membrane was not as effective at slowing the transfer rate as was negative charge in the donor vesicle. Increasing the ionic strength of the buffer with NaCl significantly reversed the charge effects. At neutral pH, the transfer protein (pI congruent with 9.0) is expected to be positively charged, which may promote association with the negatively charged donor membrane. Based on these and other experiments, we conclude that the transfer process follows first-order kinetics and that the off-rate of the transfer protein from the donor vesicle surface is the rate-limiting step in the transfer process.  相似文献   

11.
The curvature, cholesterol content,and transbilayer distribution of phospholipids significantly influence the functional properties of cellular membranes, yet little is known of how these parameters interact. In this study, the transbilayer distribution of phosphatidylethanolamine (PE) is determined in vesicles with large (98 nm) and small (19 nm)radii of curvature and with different proportions of PE, phosphatidylcholine, and cholesterol. It was found that the mean diameters of both types of vesicles were not influenced by their lipid composition, and that the amino-reactive compound 2,4,6-trinitrobenzenesulphonic acid (TNBS) was unable to cross the bilayer of either type of vesicle. When large vesicles were treated with TNBS, ~40% of the total membrane PE was derivatized; in the small vesicles 55% reacted. These values are interpreted as representing the percentage of total membrane PE residing in the outer leaflet of the vesicle bilayer. The large vesicles likely contained ~20% of the total membrane lipid as internal membranes. Therefore, in both types of vesicles, PE as a phospholipid class was randomly distributed between the inner and outer leaflets ofthe bilayer. The proportion oftotal PE residing in the outer leaflet was unaffected by changes in either the cholesterol orPE content of the vesicles. However, the transbilayer distributions of individual molecular species of PE were not random, and were significantly influenced by radius of curvature, membrane cholesterol content, or both. For example, palmitate and docosahexaenoate-containing species of PE were preferentially located in the outer leaflet of the bilayer. Membrane cholesterol content affected the transbilayer distributions of stearate-, oleate-, and linoleate-containing species. The transbilayer distributions ofpalmitate-, docosahexaenoate-, and stearate-containing species were significantly influenced by membrane curvature, but only in the presence of high levels of cholesterol. Thus, differences in membrane curvature and cholesterol content alter the array of PE molecules present on the surfaces of phospholipid bilayers. In cells and organelles, these differences could have profound effects on a number of critical membrane functions and processes.  相似文献   

12.
The curvature, cholesterol content, and transbilayer distribution of phospholipids significantly influence the functional properties of cellular membranes, yet little is known of how these parameters interact. In this study, the transbilayer distribution of phosphatidylethanolamine (PE) is determined in vesicles with large (98 nm) and small (19 nm) radii of curvature and with different proportions of PE, phosphatidylcholine, and cholesterol. It was found that the mean diameters of both types of vesicles were not influenced by their lipid composition, and that the amino-reactive compound 2,4,6-trinitrobenzenesulphonic acid (TNBS) was unable to cross the bilayer of either type of vesicle. When large vesicles were treated with TNBS, approximately 40% of the total membrane PE was derivatized; in the small vesicles 55% reacted. These values are interpreted as representing the percentage of total membrane PE residing in the outer leaflet of the vesicle bilayer. The large vesicles likely contained approximately 20% of the total membrane lipid as internal membranes. Therefore, in both types of vesicles, PE as a phospholipid class was randomly distributed between the inner and outer leaflets of the bilayer. The proportion of total PE residing in the outer leaflet was unaffected by changes in either the cholesterol or PE content of the vesicles. However, the transbilayer distributions of individual molecular species of PE were not random, and were significantly influenced by radius of curvature, membrane cholesterol content, or both. For example, palmitate- and docosahexaenoate-containing species of PE were preferentially located in the outer leaflet of the bilayer. Membrane cholesterol content affected the transbilayer distributions of stearate-, oleate-, and linoleate-containing species. The transbilayer distributions of palmitate-, docosahexaenoate-, and stearate-containing species were significantly influenced by membrane curvature, but only in the presence of high levels of cholesterol. Thus, differences in membrane curvature and cholesterol content alter the array of PE molecules present on the surfaces of phospholipid bilayers. In cells and organelles, these differences could have profound effects on a number of critical membrane functions and processes.  相似文献   

13.
[14C]Cholesterol movement between egg phosphatidylcholine-cholesterol lipid vesicles and vesicles prepared from monkey small intestinal brush border membrane (BBMV) was studied in physiological buffer at 37 degrees C. The rate of cholesterol transfer from sonicated unilamellar vesicles (ULV) to BBMV follows apparently first-order kinetics. Intermembrane cholesterol movement was strikingly similar in both the directions. However, from BBMV to ULV, the transfer rate was three times faster than that of ULV to brush border membrane (BBM). Similarity in the rate constant was observed when cholesterol transfer was studied using either large multilamellar lipid vesicles or ULV as the donor and BBMV as the acceptor membrane. Rate constant was also the same when the acceptor membrane used was either intact BBMV or ULV prepared from BBM lipids. The rate of transfer of label was not affected even when the acceptor vesicle concentration was increased over fivefold, indicating the first-order nature of the reaction. Transfer of cholesterol from ULV to BBMV was accelerated by the presence of acetone, dimethyl sulfoxide (DMSO), deoxycholate, and papain. Partially purified nonspecific lipid-exchange protein increased the rate of cholesterol transfer by about threefold. Reduction in BBM cholesterol and phospholipid content was noted by DMSO, acetone, and deoxycholate, while papain caused a small depletion of membrane protein. Cholesterol transfer is temperature dependent with an activation energy of 31 kJ X mol-1, which is almost identical in the presence or absence of nonspecific lipid-exchange protein. The molecular mechanism of intermembrane cholesterol movement is discussed in view of the kinetic data obtained.  相似文献   

14.
Highly curved cell membrane structures, such as plasmalemmal vesicles (caveolae) and clathrin-coated pits, facilitate many cell functions, including the clustering of membrane receptors and transport of specific extracellular macromolecules by endothelial cells. These structures are subject to large mechanical deformations when the plasma membrane is stretched and subject to a change of its curvature. To enhance our understanding of plasmalemmal vesicles we need to improve the understanding of the mechanics in regions of high membrane curvatures. We examine here, theoretically, the shapes of plasmalemmal vesicles assuming that they consist of three membrane domains: an inner domain with high curvature, an outer domain with moderate curvature, and an outermost flat domain, all in the unstressed state. We assume the membrane properties are the same in these domains with membrane bending elasticity as well as in-plane shear elasticity. Special emphasis is placed on the effects of membrane curvature and in-plane shear elasticity on the mechanics of vesicle during unfolding by application of membrane tension. The vesicle shapes were computed by minimization of bending and in-plane shear strain energy. Mechanically stable vesicles were identified with characteristic membrane necks. Upon stretch of the membrane, the vesicle necks disappeared relatively abruptly leading to membrane shapes that consist of curved indentations. While the resting shape of vesicles is predominantly affected by the membrane spontaneous curvatures, the membrane shear elasticity (for a range of values recorded in the red cell membrane) makes a significant contribution as the vesicle is subject to stretch and unfolding. The membrane tension required to unfold the vesicle is sensitive with respect to its shape, especially as the vesicle becomes fully unfolded and approaches a relative flat shape.  相似文献   

15.
Mono- and dipalmitoylphosphatidylethanolamine derivatives have been synthesized and used to evaluate the role of cross-links between the amino groups of two phospholipid molecules in the rate of cholesterol movement between membranes. Incorporation of the cross-linked phospholipids into small unilamellar vesicles (the donor species) decreased the rate of spontaneous cholesterol exchange with acceptor membranes (small unilamellar vesicles or Mycoplasma gallisepticum cells). These results suggest that the cross-linking of aminophospholipids by reactive intermediates, which may be one of the degenerative transformations associated with peroxidation of unsaturated lipids and cellular aging, can inhibit cholesterol exchangeability in biological membranes. The rates of spontaneous [14C]cholesterol and protein-mediated 14C-labeled phospholipid exchange from diamide-treated mycoplasma and erythrocyte membranes have also been measured. The formation of extensive disulfide bonds in the membrane proteins of M. gallisepticum enhanced the 14C-labeled phospholipid exchange rate but did not affect the rate of [14C]cholesterol exchange. The rates of radiolabeled cholesterol and phospholipid exchange between erythrocyte ghosts and vesicles were both enhanced (but to different extents) when ghosts were treated with diamide. These observations suggest that diamide-induced oxidative cross-linking of sulfhydryl groups in membrane proteins does not lead to random defects in the lipid domain.  相似文献   

16.
Transfer of phosphatidylinositol (PI) between membranes was reconstituted in a cell-free system using membrane fractions isolated from dark-grown soybean (Glycine max [L.] Merr.). Donor membrane vesicles contained [3H]myo-inositol-labeled PI. A fraction enriched in endoplasmic reticulum was a more efficient donor than its parent microsomal membrane fraction. As acceptor, cytoplasmic side-out plasma membrane vesicles were more efficient than cytoplasmic side-in plasma membrane vesicles. Endoplasmic reticulum was also an efficient acceptor, suggesting that transfer occurred to cytoplasmic membrane leaflets. PI transfer was time and temperature dependent but did not require cytosolic proteins, ATP, GTP, cytosol, and acyl-coenzyme A. These results suggest that neither lipid transfer proteins nor transition vesicles, similar to those involved in vesicle trafficking from endoplasmic reticulum to the Golgi apparatus, were involved. In the presence of Mg2+ and ATP, endoplasmic reticulum PI was not metabolized, whereas PI transferred to the plasma membrane was metabolized into phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate. To summarize, the cell-free transfer of endoplasmic reticulum-derived PI was distinct from, for example, vesicle transport from endoplasmic reticulum to Golgi apparatus, not only in its regulation but also in its acceptor unspecificity.  相似文献   

17.
Reconstituted discoidal high-density lipoproteins (rHDLs) of apolipoprotein AI are able to induce leakage of the internal aqueous space of lipid vesicles (A. Tricerri et al., 1998, Biochim. Biophys. Acta 1391, 67-78) and such interaction depends on the cholesterol content of vesicles and rHDL as well as the rHDL size. With the aim of knowing if this rHDL/vesicle interaction plays some role in the cholesterol exchange, the time course for bidirectional radiolabeled cholesterol transfer between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles and different sized rHDLs was measured. The results show that size increase in the rHDL decreases the rate constant for cholesterol transfer from POPC/cholesterol vesicles and that the initial presence of cholesterol in the vesicles results in an increased rate constant for cholesterol transfer from the rHDLs. This cannot be explained by a simple aqueous diffusion mechanism. The existing correlation between rHDL/vesicle interaction and cholesterol transfer rate suggests that besides the aqueous diffusion, another mechanism involving the binding or interaction between donor and acceptor may occur. This fact may be of physiological relevance since the relative high affinity of small cholesterol-poor discs for cell membranes could facilitate the cholesterol efflux, while the decreased membrane affinity as a consequence of cholesterol enrichment and increase in size would decrease the rate of transfer in the opposite direction.  相似文献   

18.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

19.
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.  相似文献   

20.
Asymmetry of inner and outer leaflet lipid composition is an important characteristic of eukaryotic plasma membranes. We previously described a technique in which methyl-β-cyclodextrin-induced lipid exchange is used to prepare biological membrane-like asymmetric small unilamellar vesicles (SUVs). Here, to mimic plasma membranes more closely, we used a lipid-exchange-based method to prepare asymmetric large unilamellar vesicles (LUVs), which have less membrane curvature than SUVs. Asymmetric LUVs in which sphingomyelin (SM) or SM + 1-palmitoyl-2-oleoyl-phosphatidylcholine was exchanged into the outer leaflet of vesicles composed of 1,2-dioleoyl-phosphatidylethanolamine (DOPE) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) were prepared with or without cholesterol. Approximately 80–100% replacement of outer leaflet DOPE and POPS was achieved. At room temperature, SM exchange into the outer leaflet increased the inner leaflet lipid order, suggesting significant interleaflet interaction. However, the SM-rich outer leaflet formed an ordered state, melting with a midpoint at ∼37°C. This was about the same value observed in pure SM vesicles, and was significantly higher than that observed in symmetric vesicles with the same SM content, which melted at ∼20°C. In other words, ordered state formation by outer-leaflet SM in asymmetric vesicles was not destabilized by an inner leaflet composed of DOPE and POPS. These properties suggest that the coupling between the physical states of the outer and inner leaflets in these asymmetric LUVs becomes very weak as the temperature approaches 37°C. Overall, the properties of asymmetric LUVs were very similar to those previously observed in asymmetric SUVs, indicating that they do not arise from the high membrane curvature of asymmetric SUVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号