首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The enzyme GDPmannose: dolichyl monophosphate mannosyltransferase has been solubilized and purified from mice liver mitochondrial outer membranes. The purification combines detergent extraction of purified outer membranes using Nonidet P-40, with subsequent ion-exchange chromatography on DEAE-cellulose. At this stage, a 400-fold purification is obtained. The partially purified mannosyltransferase is activated choline-containing lipids such as phosphatidylcholine, lysophatidylcholine and sphingomyelin. The reaction is dependent upon the addition of exogenous dolichyl monophosphate. The sole reaction product has been identified as dolichyl posphate-mannose. The partially purified mannosyltrasnferase exhibits a Km of 1.33 μM for GDPmannose. Enzyme activity, eluted from DEAE-cellulose, could be further purified after incorporation into sphingomyelin vesicles containing dolichyl monophosphate followed by a sucrose density gradient certrifugation. The mannosyltransferase activity is completely associated with the liposomes at the top of the gradient. Significant stabilization and purification (approx. 1600-fold) of enzyme activity associated with these liposomes is obtained. Furthermore, the reconstitution of this purified enzyme within specific liposomes provides a good model membrane to investigate the molecular requirement of this mitochondrial mannosyltransferase.  相似文献   

2.
The initial rate of dolichyl phosphate mannose biosynthesis was measured in white-matter membranes from pig brain at various ages from before birth throughout the period of most rapid brain development. Dolichyl phosphate mannose synthase activity increased from prenatal values to a maximum in 3 week-old animals, and gradually decreased to adult values after 8 weeks of age. The nature of the developmental change was investigated by enzymic and biochemical comparisons of the membrane preparations from the most active age (3 weeks) and adult controls. The specific activity of dolichyl phosphate mannose synthase in preparations from actively myelinating animals was approx. 3-fold higher than adults when mannolipid formation was assayed with saturating concentrations of GDP-[14C]mannose and utilizing only endogenous acceptor lipid. No major variations were found in the apparent Km values for GDP-mannose or exogenous dolichyl monophosphate. However, the ratio of dolichyl phosphate mannose synthase activity for myelinating animals/adult animals decreased significantly when large amounts of exogenous dolichyl monophosphate were added to the incubation mixtures. Dolichyl phosphate mannose synthase activity was also compared in white-matter membranes depleted of endogenous dolichyl monophosphate by enzymic mannosylation or treatment with butanol. When these preparations were assayed with identical amounts of exogenous dolichyl monophosphate, the dolichyl monophosphate-depleted membranes from actively myelinating animals contained only 20–30% more dolichyl phosphate mannose synthase activity. Overall, these studies strongly suggest that the developmental change in dolichyl phosphate mannose synthase activity is due primarily to the presence of a relatively lower amount of endogenous dolichyl monophosphate being accessible to the mannosyltransferase in the white-matter membranes from adult animals.  相似文献   

3.
Inner mitochondrial membranes from liver contain a dolichol kinase which required CTP as a phosphoryl donor. Kinase activity was linear with protein concentration and unlike other reported kinases, activated almost equally well by Mg2+, Mn2+ or Ca2+. Thin-layer chromatography showed that the reaction product co-migrated with authentic dolichyl monophosphate. The phosphorylation of dolichol did not occur in presence of ATP, GTP or UTP but required exogenous dolichol for maximal activity. Newly synthesized [3H]dolichyl monophosphate has been shown to be glycosylated in the presence of GDP[14C]mannose or UDP[14C]glucose. The double labeled lipids formed by the sugar nucleotide-dependent reactions were identified respectively as [14C]mannosylphosphoryl[3H]dolichol and [14C]glucosylphosphoryl [3H]dolichol. These results are discussed in terms of regulation of N-glycosylation processes in inner mitochondrial membranes from liver.  相似文献   

4.
Membranes of Saccharomyces cerevisiae were separated on urografin gradients. The specific activity of the light membranes (endoplasmic reticulum), the Golgi-like vesicles and the plasma membrane in transferring mannosyl residues from GDP-mannose to mannoproteins and to dolichyl monophosphate has been determined. The first mannose of the O-glycosidically linked manno-oligosaccharides is incorporated with the highest specific activity by the endoplasmic reticulum. The incorporation of the second to fourth mannosyl groups is catalysed with increasing activity also by the Golgi-like vesicles and the plasma membrane.The incorporation of mannosyl groups into weak alkali-stable positions (N-glycosidically linked chains) is carried out with almost the same specific activity by all three membrane fractions, however, dolicholdependent and-independent steps could not be distinguished as yet.The results are discussed in terms of a sequential addition of sugar residues along the route of export of the mannoproteins. The dolichol-dependent steps seem to occur on the endoplasmic reticulum and thus very carly in the event.Abbreviations GDP-mannose guanosine diphosphate mannose - Dol-P dolichyl monophosphate - Dol-P-mannose dolichyl monophosphate mannose  相似文献   

5.
An axolemma-enriched membrane fraction prepared by an improved procedure from bovine white matter catalyzes the enzymatic transfer of [14C]mannose and N-acetyl[14C]glucosamine from their nucleotide derivatives into a mannolipid and an N-acetylglucosaminyl lipid in the presence of exogenous dolichyl monophosphate. The labeled glycolipid products have the chemical and chromatographic characteristics of mannosylphosphoryldolichol and N-acetylglucosaminylpyrophosphoryldolichol. The initial rates of synthesis of the glycolipids by the axolemma-enriched membrane fraction have been compared with the initial rates of glycolipid formation catalyzed by a microsomal preparation and myelin in the presence or absence of dolichyl monophosphate. Essentially no glycolipid synthesis was observed when either GDP-[14C]mannose or UDP-N-acetyl[14C]glucosamine were incubated with myelin in the presence or absence of exogenous dolichyl monophosphate. A comparison of the initial rates of synthesis of the glycolipids using endogenous acceptor lipid revealed that the rate of formation of mannolipid was 7 times faster for the microsomal membranes than the axolemma-enriched membranes. In the presence of an amount of dolichyl monophosphate approaching saturation the initial rate of glycolipid synthesis was markedly enhanced for both membrane preparations. However, due to a more dramatic enhancement in the axolemma-enriched membranes the initial rate of mannolipid synthesis was only approx. 2.5 times greater in the microsomal membranes. A similar observation was made when the initial rates of N-acetylglucosaminyl lipid synthesis were compared for axolemma-enriched and microsomal preparations in the presence and absence of exogenous dolichyl monophosphate. These studies indicate that the axolemma-enriched membranes have a relatively lower content of dolichyl monophosphate than the microsomal membranes although the difference in the amount of mannosyltransferase is only two to three-fold lower. The presence of a sugar nucleotide pyrophosphatase activity capable of degrading GDP-mannose and UDP-N-acetylglucosamine has also been demonstrated in the axolemma-enriched membrane fraction.  相似文献   

6.
Chicken liver mitochondria contain enzymes for the dolichol cycle. GDPmannose dolicholphosphate mannosyltransferase has been solubilized with Emulgen 909 and purified. The purified enzyme was not homogeneous, but highly specific for GDPmannose and dolichyl phosphate. The enzyme activity was stimulated by MgCl2 (3 mM optimum) and exhibited a pH optimum at around 7.2. Bisubstrate kinetic analysis indicated that the enzyme follows a sequential mechanism. The Km values for GDPmannose and dolichyl phosphate were 0.43 and 14.3 microM, respectively. The purified enzyme was labile and lost its activity on storage at 0 degree C overnight or incubation at 30 degrees C or higher temperature. Inactivation could be prevented by the addition of heat-denatured mitochondrial extract. Further investigation revealed that phospholipids and dolichyl phosphate are responsible for the stabilization. Single addition of either phospholipid or dolichyl phosphate showed little activity, but the combination of these lipids enhanced the stabilizing activity greatly. Eight naturally occurring phospholipids were tested and found to be effective in combination with dolichyl phosphate. Among these, sphingomyelin was the most effective. Dolichol could partially substitute dolichyl phosphate but worked at higher concentrations.  相似文献   

7.
In rats fed orotic acid, the incorporation in liver subcellular fractions of sugars injected intraperitonealy is altered only for mannose, but not for fucose or galactose. Direct determinations of several glycosyltransferases are done in smooth and rough microsomes: fucosyl-, glactosyl-, N-acetylglucosaminyltransferase activities are at quite similar levels in normal and fatty livers. By contrast, sialyltransferase activity is increased (+50%) in smooth microsomes of fatty livers, while mannosyltransferase activity is inhibited by 30%. These alterations are not caused by interfering reactions pyrophosphatases or proteases). For the mannosyltransferase activity, the inhibition is found in the dolichylphorylmannose intermediates. Kinetic studies suggest that there is deficiency of both enzyme and endogenous dolichyl phosphate.  相似文献   

8.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

9.
The concentrations of dolichol and cholesterol in livers of rats maintained for 2 weeks on a diet enriched with cholesterol (1%) were significantly higher than those in animals on a normal diet. The incorporation of radioactive mevalonate into dolichol and into a dolichyl diphosphate oligosaccharide fraction by liver slices of the cholesterol-fed animals was increased over that of the control group. However, the incorporation of radioactive mevalonate into cholesterol was decreased, as was the incorporation of radioactive acetate into both dolichol and, more markedly, cholesterol. These results are consistent with cholesterol feeding causing partial inhibition of the cholesterol-biosynthetic pathway both at β-hydroxy-β-methylglutaryl coenzyme A reductase and at a step after farnesyl pyrophosphate formation, resulting in a greater flux of mevalonate to dolichol and an increase in pool sizes of precursors of β-hydroxy-β-methylglutaryl coenzyme A. Maximal activity of glycosyl transfer to dolichyl phosphate was greater in microsomal preparations from livers of cholesterol-fed animals compared with those of control animals. A corresponding higher degree of in vitro glycosylation of endogenous protein was also observed. It is concluded that the cholesterol-enriched diet caused an increase in the biosynthesis and concentration of dolichyl monophosphate which resulted in a higher level of N-glycosylation of protein. These effects were complicated by differences in the kinetics of glycosyl transfer and in its response to exogenous dolichyl monophosphate.  相似文献   

10.
The initial rate of mannosylphosphoryldolichol formation by pig brain white matter is 2.9 to 3.3-fold higher in membranes from actively myelinating animals as compared to similar preparations from adults. Exogenous dolichyl monophosphate stimulated mannolipid synthesis in both preparations indicating that the level of the acceptor lipid was rate-limiting. The relative enhancement, however, was higher in membranes from adult animals reducing the ratio of initial rates for young/adult. Exogenous dolichyl monophosphate also stimulated the labeling of a mannosylated oligosaccharide lipid and mannoproteins, including a polypeptide (apparent molecular weight of 100,000) not labeled by gray matter membranes.  相似文献   

11.
W McDowell  R T Schwarz 《FEBS letters》1989,243(2):413-416
Guanosine diphosphate (GDP) esters of 2-deoxy-D-glucose (2dGlc), 2-deoxy-2-fluoro-D-mannose (2FMan), 3-deoxy-D-mannose (3dMan), 4-deoxy-D-mannose (4dMan) and 6-deoxy-D-mannose (6dMan) have been synthesised and tested for their ability to act as inhibitors of dolichyl phosphate mannose synthesis (enzyme: GDP-mannose:dolichyl-phosphate mannosyltransferase, EC 2.4.1.83) in chick embryo cell microsomal membranes. The following order of efficiency was found with the apparent Ki in parentheses: GDP-6dMan (0.40 microM +/- 0.15) greater than GDP-3dMan (1.0 microM +/- 0.1) = GDP-2dGlc (1.3 microM +/- 0.2) greater than GDP-4dMan (3.1 microM +/- 0.1) GDP-2FMan (15 microM +/- 0). For comparison the Km for GDP-Man was 0.52 microM +/- 0.02 and the Ki for GDP was 56 microM +/- 2. These results indicate that the 6-hydroxyl group of mannose is not crucial for enzyme-substrate recognition, whereas the 2- and 3-hydroxyls may have some involvement. The 4-hydroxyl appears to be an important determinant for enzyme-substrate recognition in this mannosyltransferase.  相似文献   

12.
Of the subcellular fractions of rat liver the endoplasmic reticulum was the most active in GDP-mannose: retinyl phosphate mannosyl-transfer activity. The synthesis of retinyl phosphate mannose reached a maximum at 20-30 min of incubation and declined at later times. Retinyl phosphate mannose and dolichyl phosphate mannose from endogenous retinyl phosphate and dolichyl phosphate could also be assayed in the endoplasmic reticulum. About 1.8 ng (5 pmol) of endogenous retinyl phosphate was mannosylated per mg of endoplasmic reticulum protein (15 min at 37 degrees C, in the presence of 5 mM-MnCl2), and about 0.15 ng (0.41 pmol) of endogenous retinyl phosphate was mannosylated with Golgi-apparatus membranes. About 20 ng (13.4 pmol) of endogenous dolichyl phosphate was mannosylated in endoplasmic reticulum and 4.5 ng (3 pmol) in Golgi apparatus under these conditions. Endoplasmic reticulum, but not Golgi-apparatus membranes, catalysed significant transfer of [14C]mannose to endogenous acceptor proteins in the presence of exogenous retinyl phosphate. Mannosylation of endogenous acceptors in the presence of exogenous dolichyl phosphate required the presence of Triton X-100 and could not be detected when dolichyl phosphate was solubilized in liposomes. Dolichyl phosphate mainly stimulated the incorporation of mannose into the lipid-oligosaccharide-containing fraction, whereas retinyl phosphate transferred mannose directly to protein.  相似文献   

13.
Dolichyl monophosphate and its sugar derivatives in plants.   总被引:10,自引:5,他引:5       下载免费PDF全文
A glucose acceptor was isolated from soya beans by extraction with chloroform/methanol (2:1, v/v), followed by DEAE-cellulose column chromatography of the extract. This acceptor could not be distinguished from liver dolichyl monophosphate by t.l.c. It could replace dolichyl monophosphate as a mannose acceptor with a liver enzyme and its glucosylated derivative could replace dolichyl monophosphate glucose as a glucose donor in the same system. These results, together with those already reported [Pont Lezica, Brett, Romero Martinez & Dankert (1975) Biochem, Biophys. Res. Commun. 66, 980-987], indicate that the acceptor from soya bean is a dolichyl monophosphate. Gel filtration of its glucosylated derivative on Sephadex G-75 in the presence of sodium deoxycholate indicated that the acceptor contained 17 or 18 isoprene units. An enzyme preparation from pea seedlings was shown to use endogenous acceptors to form lipid phosphate sugars containing mannose and N-acetylglucosamine from GDP-mannose and UDP-N-acetylglucosamine. Chromatographic and degradative techniques indicated that the compounds formed were lipid monophosphate mannose, lipid pyrophosphate N-acetylglucosamine, lipid pyrophosphate chitobiose and a series of lipid pyrophosphate oligosaccharides containing both mannose and N-acetylglucosamine. None of these compounds was degraded by catalytic hydrogenation, and so the lipid moiety in each case was probably an alpha-saturated polyprenol. The endogenous acceptors for mannose and N-acetylglucosamine in peas may therefore be dolichyl monophosphate, as has been found in mammalian systems.  相似文献   

14.
Hamster liver post-nuclear membranes catalyze the transfer of mannose from GDP-mannose to endogenous dolichyl phosphate and to a second major endogenous acidic lipid. This mannolipid was believed to be synthesized from endogenous retinyl phosphate and was tentatively identified as retinyl phosphate mannose (Ret-P-Man) (De Luca, L. M., Brugh, M. R. Silverman-Jones, C. S. and Shidoji, Y. (1982) Biochem. J. 208, 159-170). To characterize this endogenous mannolipid in more detail, we isolated and purified the mannolipid from incubations containing hamster liver membranes and GDP-[14C]mannose and compared its properties to those of authentic Ret-P-Man. We found that the endogenous mannolipid was separable from authentic Ret-P-Man on a Mono Q anion exchange column, did not exhibit the absorbance spectrum characteristic of a retinol moiety, and was stable to mild acid under conditions which cleave authentic Ret-P-Man. The endogenous mannolipid was sensitive to mild base hydrolysis and mannose was released from the mannolipid by snake venom phosphodiesterase digestion. These properties were consistent with the endogenous acceptor being phosphatidic acid. Addition of exogenous phosphatidic acid, but not phospholipids with a head group blocking the phosphate moiety, to incubations containing hamster liver membranes and GDP-[14C]mannose resulted in the synthesis of a mannolipid with chromatographic and physical properties identical to the endogenous mannolipid. A double-labeled mannolipid was synthesized in incubations containing hamster liver membranes, GDP-[14C]mannose, and [3H]phosphatidic acid. Mannosyl transfer to exogenous phosphatidic acid was saturable with increasing concentrations of phosphatidic acid and GDP-mannose and specific for glycosyl transfer from GDP-mannose. Class E Thy-1-negative mutant mouse lymphoma cell membranes, which are defective in dolichyl phosphate mannose synthesis, also fail to transfer mannose from GDP-mannose to exogenous phosphatidic acid or retinyl phosphate. Amphomycin, an inhibitor of dolichyl phosphate mannose synthesis, blocked mannosyl transfer to the endogenous lipid, and to exogenous retinyl phosphate and phosphatidic acid. We conclude that the same mannosyltransferase responsible for dolichyl phosphate mannose synthesis can also utilize in vitro exogenous retinyl phosphate and phosphatidic acid as well as endogenous phosphatidic acid as mannosyl acceptors.  相似文献   

15.
Incubation of liver microsomes from hibernating ground squirrel with GDP-[14C]mannose and exogenous dolichyl phosphate resulted in the synthesis of dolichyl phosphate [14C]mannose. The mannosyltransferase activity was about 3-fold higher in microsomes from hibernating ground squirrels than in those from active animals. Incubation for 30 min of liver microsomes from hibernating animals with dolichyl pyrophosphate N,N'-diacetyl-[14C]chitobiose and GDP-[14C]mannose led to the synthesis of lipid-[14C]trisaccharide. When liver microsomes were incubated with lipid-[14C]trisaccharide and unlabelled GDP-mannose, lipid-tetra- to heptasaccharides were discovered in the chloroform-methanol (2:1) extract. Since, under the experimental conditions, negligible synthesis of dolichyl phosphate mannose was observed, it was assumed that GDP-mannose was a donor of mannose in the conversion of lipid-trisaccharide into lipid-oligosaccharides containing 2-5 mannose residues.  相似文献   

16.
Dolichyl phosphate phosphatase from Tetrahymena pyriformis.   总被引:1,自引:1,他引:0       下载免费PDF全文
A soluble dolichyl phosphate phosphatase from Tetrahymena pyriformis was purified about 68-fold. The enzyme appeared to be specific for dolichyl phosphate and existed in two interrelated forms, one of mol.wt. about 500000 and the other of mol.wt. about 63000. The enzyme was strongly inhibited by 5 mM-Mn2+ and was strongly stimulated by Mg2+. Tetrahymena in the exponential growth phase contained more of this enzymic activity than cells in stationary or lag phase. The dolichyl phosphate phosphatase may be loosely bound to mitochondrial membranes. Two roles proposed for this enzyme are (1) that of releasing dolichol from its phosphorylated biosynthetic form for its use in the cell as unesterified dolichol or dolichyl ester and/or (2) that of regulation of synthesis of glycoproteins or some other glycosylated compound.  相似文献   

17.
A crude membrane preparation from Phaseolus aureus hypocotyls catalyzes the incorporation of mannose from GDP-[14C]mannose into a acid labile glycolipid and a methanol insoluble fraction. Addition of dolichyl monophosphate to the incubation mixture stimulated the formation of both the mannolipid and the methanol insoluble endproduct. Thin-layer chromatography of endogenous lipid and of the stimulated lipid fraction revealed that both compounds run identical. Ficaprenyl monophosphate also stimulates the incorporation of mannose; however, the ficaprenyl monophosphate mannose formed is not identical to the endogenous mannolipid. This suggests that the endogenous acceptor has the properties of an α-saturated polyprenyl monophosphate rather than those of the ficaprenyl phosphate type. The same membrane preparation also incorporates N-acetylglucosamine into an acid labile glyolipid as well as into a polymer fraction. Evidence is presented that the N-acetylglucosamine containing lipid consists of a mixture of dolichyl pyrophosphate N-acetylglucosamine and dolichyl pyrophosphate di-N-acetylchitobiose. It seems likely that the two compounds have a precursor-product relationship. Incubation of dolichyl pyrophosphate di-N-acetylchitobiose together with GDP-mannose gives rise to lipid-bound mannosyl-di-N-acetylchitobiose. Radioactivity from either the [14C]mannolipid or the N-acetyl[14C]glucosamine containing lipid is incorporated into a methanol insoluble product to 3.4 and 6.3%, respectively; it seems, at least in part, to be a glycoprotein.  相似文献   

18.
Crude microsomal preparations from hen oviduct catalyze the transfer of [32P]phosphate from [gamma-32P]CTP or [gamma-32P]dCTP to endogenous dolichol, forming dolichyl [32P]monophosphate. The oviduct kinase activity assayed with [gamma-32P]CTP is stimulated by divalent cations and exogenous dolichol. The enzymatic formation of dolichyl [32P]monophosphate is inhibited by dCDP and CDP, but not CMP, ADP, GDP, or UDP. The hen oviduct kinase is inhibited 50% by the addition of 38 microM CDP, but 101 microM dCDP is required for 50% inhibition. The amount of dolichol kinase activity in chick oviduct microsomes increases 3.7-fold within 10 days of estrogen administration. The hormone-induced increase in kinase activity is also observed when membranes from untreated and estrogen-treated chicks are assayed in the presence of saturating levels of exogenous dolichol. The microsomal preparations from oviducts of untreated chicks and fully induced birds both exhibit an apparent Km value of 7.1 microM for CTP. An apparent Km of 14 microM has been determined for dCTP. Thus, the developmental change in dolichol kinase activity does not appear to be the result of a difference in the amount of available endogenous dolichol or an alteration in the reactive site for the nucleoside triphosphate substrate, but is probably due to an increased level of the enzyme.  相似文献   

19.
The possible role of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (the rate-controlling enzyme of cholesterol biosynthesis) in regulating the rate of dolichyl phosphate biosynthesis in rat liver was investigated. Rats were either fasted 48 h or fed diets supplemented with the drug cholestyramine. The activity of HMG-CoA reductase was 5000-fold greater in liver from cholestyramine-fed rats as compared to fasted rats. The activity of dolichyl phosphate synthetase, the prenyl transferase responsible for the biosynthesis of dolichyl phosphate from farnesyl pyrophosphate and isopentenyl pyrophosphate, was similar in both nutritional conditions and was markedly less active than HMG-CoA reductase even in the fasted state. Acetate incorporation into cholesterol was 2200-fold greater in liver slices from cholestyramine-fed rats as compared to fasted rats. By contrast, acetate incorporation into dolichyl phosphate was only 6-fold higher. Further studies suggested that the levels of farnesyl pyrophosphate and isopentenyl pyrophosphate are several hundred-fold greater in liver from cholestyramine-treated rats. From these results, it is concluded that the rate of dolichyl phosphate biosynthesis in rat liver is not regulated by the activity of HMG-CoA reductase but is probably regulated at the level of dolichyl phosphate synthetase.  相似文献   

20.
GDP- and UDP-deoxyglucose inhibit the incorporation of glucose from UDP-glucose into dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides. GDP-deoxyglucose inhibits by competing with the physiological nucleotide sugars for dolichyl phosphate, and dolichyl phosphate deoxyglucose is formed. This inhibition is reversed by excess of dolichyl phosphate. UDP-deoxyglucose does not give rise to a lipid-linked derivative, and inhibition by this analog is not reversed by dolichyl phosphate. The UDP- and GDP-derivatives of deoxyglucose inhibit the incorporation of glucose into glucose-containing glycoproteins. This effect seems to be the result of the inhibition of lipid intermediates glucosylation and is comparable to the effect produced by coumarin. Cellulose synthetase activity is not affected by UDP- or GDP-deoxyglucose. On the other hand, deoxyglucose inhibits the formation of β-1,4-glucans in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号