首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth and viability of an anoxygenic, phototrophic bacterial community in the hypolimnion of Zaca Lake, Calif., were compared throughout the summer. The community is dominated by a single species, “Thiopedia rosea,” that inhabits the entire hypolimnion (6 to 8 m) for approximately 11 months. Suboptimal conditions in the hypolimnion (extremely low light intensity, high or low H2S levels) result in zero or extremely low growth rates (doubling times > 1 month) for most of the population, most of the time, yet cells remain viable and capable of high specific growth rates (doubling times of 1 to 10 days) when placed under favorable conditions (higher light intensities and temperatures). We first conclude that phototrophic bacterial populations in situ may frequently exist in a viable yet nongrowing state. Second, the viability of cells is likely to be reduced with depth owing to higher concentrations of potentially toxic chemicals and to changes in the physiological state associated with the prolonged periods of darkness commonly found at the bottom of bacterial plates.  相似文献   

2.
SUMMARY. The difference between the results of viable and total counting procedures for bacteria are exemplified by vertical profiles from a deep and a shallow lake and from seasonal changes in the epilimnion and hypolimnion of a shallow eutrophic lake. The viable count was, on average, 0.25% of the total count, the greatest difference being noted in the anoxic hypolimnion, probably due to the inadequacy of the viable counting procedure for the isolation of bacteria from such samples. There was a general trend for the more nutrient-rich waters to support larger bacterial populations but such observations did not provide any further information on the factors responsible for the population changes observed. Seasonal fluctuations in the counts are studied and the qualitative and quantitative changes resulting from artificial enclosure of water are discussed. Not all the temporal changes could be explained and short-term changes resulting from nutrient additions to the experimental enclosures were not always reproducible. Horizontal variability was examined, found to be significant and could play an important role where water movement and turbulence is considerable. Results from six sites sampled between 1969 and 1974, representing total and viable bacterial population estimates and a total of eighteen independent or regressor variables were then subjected to principal components analysis. Results taken from the whole water column showed the overwhelming effect of the process of stratification on the bacterial population accounting for 30%-60% of its variability. Secondary components representing algal productivity could account for 10% to 20% of the variability. Many of the chosen regressor variables were acting as measures of the same phenomenon without providing significant information on what affected the bacterial population. To overcome this problem results from the hypolimnion and epilimnion were analysed separately. The analysis demonstrated the importance of seasonal changes in nutrient concentrations in the epilimnion and the development of anoxic conditions in the hypolimnion. Algal biomass, phosphate concentration and the interaction of pH and ammonia appeared to be important. It was concluded that most of the variability in the bacterial population estimates could have been explained by five of the regressor variables and that the factors most likely to provide more information would include some measure of predation and lake retention time.  相似文献   

3.
Nelson EH 《Oecologia》2007,151(1):22-32
Induced prey defenses can be costly. These costs have the potential to reduce prey survival or reproduction and, therefore, prey population growth. I estimated the potential for predators to suppress populations of pea aphids (Acyrthosiphon pisum) in alfalfa fields through the induction of pea aphid predator avoidance behavior. I quantified (1) the period of non-feeding activity that follows a disturbance event, (2) the effect of frequent disturbance on aphid reproduction, and (3) the frequency at which aphids are disturbed by predators. In combination, these three values predict that the disturbances induced by predators can substantially reduce aphid population growth. This result stems from the high frequency of predator-induced disturbance, and the observation that even brief disturbances reduce aphid reproduction. The potential for predators to suppress prey populations through induction of prey defenses may be strongest in systems where (1) predators frequently induce prey defensive responses, and (2) prey defenses incur acute survival or reproductive costs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

5.
Variation in the vulnerability of herbivore prey to predation is linked to body size, yet whether this relationship is size‐nested or size‐partitioned remains debated. If size‐partitioned, predators would be focused on prey within their preferred prey size range. If size‐nested, smaller prey species should become increasingly more vulnerable because increasingly more predators are capable of catching them. Yet, whether either of these strategies manifests in top–down prey population limitation would depend both on the number of potential predator species as well as the total mortality imposed. Here we use a rare ecosystem scale ‘natural experiment’ comparing prey population dynamics between a period of intense predator persecution and hence low predator densities and a period of active predator protection and population recovery. We use three decades of data on herbivore abundance and distribution to test the role of predation as a mechanism of population limitation among prey species that vary widely in body size. Notably, we test this within one of the few remaining systems where a near‐full suite of megaherbivores occur in high density and are thus able to include a thirtyfold range in herbivore body size gradient. We test whether top–down limitation on prey species of particular body size leads to compositional shifts in the mammalian herbivore community. Our results support both size‐nested and size‐partitioning predation but suggest that the relative top–down limiting impact on prey populations may be more severe for intermediate sized species, despite having fewer predators than small species. In addition we show that the gradual recovery of predator populations shifted the herbivore community assemblage towards large‐bodied species and has led to a community that is strongly dominated by large herbivore biomass.  相似文献   

6.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

7.
Whether predators can limit their prey has been a topic of scientific debate for decades. Traditionally it was believed that predators take only wounded, sick, old or otherwise low-quality individuals, and thus have little impact on prey populations. However, there is increasing evidence that, at least under certain circumstances, vertebrate predators may indeed limit prey numbers. This potential role of predators as limiting factors of prey populations has created conflicts between predators and human hunters, because the hunters may see predators as competitors for the same resources. A particularly acute conflict has emerged over the past few decades between gamebird hunters and birds of prey in Europe. As a part of a European-wide research project, we reviewed literature on the relationships between birds of prey and gamebirds. We start by analysing available data on the diets of 52 European raptor and owl species. There are some 32 species, mostly specialist predators feeding on small mammals, small passerine birds or insects, which never or very rarely include game animals (e.g. hares, rabbits, gamebirds) in their diet. A second group (20 species) consists of medium-sized and large raptors which prey on game, but for which the proportion in the diet varies temporally and spatially. Only three raptor species can have rather large proportions of gamebirds in their diet, and another seven species may utilise gamebirds locally to a great extent. We point out that the percentage of a given prey species in the diet of an avian predator does not necessarily reflect the impact of that predator on densities of prey populations. Next, we summarise available data on the numerical responses of avian predators to changing gamebird numbers. In half of these studies, no numerical response was found, while in the remainder a response was detected such that either raptor density or breeding success increased with density of gamebirds. Data on the functional responses of raptors were scarce. Most studies of the interaction between raptors and gamebird populations give some estimate of the predation rate (per cent of prey population taken by predator), but less often do they evaluate the subsequent reduction in the pre-harvest population or the potential limiting effect on breeding numbers. The few existing studies indicate that, under certain conditions, raptor predation may limit gamebird populations and reduce gamebird harvests. However, the number and extent of such studies are too modest to draw firm conclusions. Furthermore, their geographical bias to northern Europe, where predator-prey communities are typically simpler than in the south, precludes extrapolation to more diverse southern European ecosystems. There is an urgent need to develop further studies, particularly in southern Europe, to determine the functional and numerical responses of raptors to gamebird populations in species and environments other than those already evaluated in existing studies. Furthermore, additional field experiments are needed in which raptor and possibly also mammalian predator numbers are manipulated on a sufficiently large spatial and temporal scale. Other aspects that have been little studied are the role of predation by the non-breeding part of the raptor population, or floaters, on the breeding success and survival of gamebirds, as well as the effect of intra-guild predation. Finally there is a need for further research on practical methods to reduce raptor predation on gamebirds and thus reduce conflict between raptor conservation and gamebird management.  相似文献   

8.
Predation on bacteria and accompanying mortality are important mechanisms in controlling bacterial populations and recycling of nutrients through the microbial loop. The agents most investigated and seen as responsible for bacterial mortality are viruses and protists. However, a body of evidence suggests that predatory bacteria such as the Halobacteriovorax (formerly Bacteriovorax), a Bdellovibrio-like organism, contribute substantially to bacterial death. Until now, conclusive evidence has been lacking. The goal of this study was to better understand the contributors to bacterial mortality by addressing the poorly understood role of Halobacteriovorax and how their role compares with that of viruses. The results revealed that when a concentrated suspension of Vibrio parahaemolyticus was added into microcosms of estuarine waters, the native Halobacteriovorax were the predators that responded first and most rapidly. Their numbers increased by four orders of magnitude, whereas V. parahaemolyticus prey numbers decreased by three orders of magnitude. In contrast, the extant virus population showed little increase and produced little change in the prey density. An independent experiment with stable isotope probing confirmed that Halobacteriovorax were the predators primarily responsible for the mortality of the V. parahaemolyticus. The results show that Halobacteriovorax have the potential to be significant contributors to bacterial mortality, and in such cases, predation by Halobacteriovorax may be an important mechanism of nutrient recycling. These conclusions add another dimension to bacterial mortality and the recycling of nutrients.  相似文献   

9.
In all purification stages of a biological sewage treatment plant, phototrophic bacteria were detected by the method of viable cell counts. The predominant species identified belonged to the genus Rhodopseudomonas of purple nonsulfur bacteria. The number of phototrophic bacteria was highest in wastewater containing sludge. In activated sludge, an average of 10(5) viable cells/ml was found; the number depended upon concentration of sludge rather than on seasonal changes in light conditions in the course of a year. Bacteriochlorophyll a was extracted from activated sludge. Relative to the viable counts of phototrophic bacteria, the content of bacteriochlorophyll a was 5- to 10-fold higher than that of three representative pure cultures. By incubation of activated and digester sludge under different environmental conditions, it was shown that phototrophic bacteria can complete with other bacteria only under anaerobic conditions in the light.  相似文献   

10.
Phototrophic purple and green bacteria in a sewage treatment plant.   总被引:6,自引:3,他引:3       下载免费PDF全文
In all purification stages of a biological sewage treatment plant, phototrophic bacteria were detected by the method of viable cell counts. The predominant species identified belonged to the genus Rhodopseudomonas of purple nonsulfur bacteria. The number of phototrophic bacteria was highest in wastewater containing sludge. In activated sludge, an average of 10(5) viable cells/ml was found; the number depended upon concentration of sludge rather than on seasonal changes in light conditions in the course of a year. Bacteriochlorophyll a was extracted from activated sludge. Relative to the viable counts of phototrophic bacteria, the content of bacteriochlorophyll a was 5- to 10-fold higher than that of three representative pure cultures. By incubation of activated and digester sludge under different environmental conditions, it was shown that phototrophic bacteria can complete with other bacteria only under anaerobic conditions in the light.  相似文献   

11.
Alien predators are widely considered to be more harmful to prey populations than native predators. To evaluate this expectation, we conducted a meta-analysis of the responses of vertebrate prey in 45 replicated and 35 unreplicated field experiments in which the population densities of mammalian and avian predators had been manipulated. Our results showed that predator origin (native versus alien) had a highly significant effect on prey responses, with alien predators having an impact double that of native predators. Also the interaction between location (mainland versus island) and predator origin was significant, revealing the strongest effects with alien predators in mainland areas. Although both these results were mainly influenced by the huge impact of alien predators on the Australian mainland compared with their impact elsewhere, the results demonstrate that introduced predators can impose more intense suppression on remnant populations of native species and hold them further from their predator-free densities than do native predators preying upon coexisting prey.  相似文献   

12.
Lake mixing disrupts chemical and physical gradients that structure bacterial communities. A transplant experiment was designed to investigate the influence of post‐mixing environmental conditions and biotic interactions on bacterial community composition. The experimental design was 3 × 2 factorial, where water was incubated from three different sources (epilimnion, hypolimnion, and mixed epilimnion and hypolimnion) at two different locations in the water column (epilimnion or hypolimnion). Three replicate mesocosms of each treatment were removed every day for 5 days for bacterial community profiling, assessed by automated ribosomal intergenic spacer analysis. There were significant treatment effects observed, and temperature was the strongest measured driver of community change (r = ?0.66). Epilimnion‐incubated communities changed more than hypolimnion‐incubated. Across all treatments, we classified generalist, layer‐preferential and layer‐specialist populations based on occurrence patterns. Most classified populations were generalists that occurred in both strata, suggesting that communities were robust to mixing. In a network analysis of the mixed‐inocula treatments, there was correlative evidence of inter‐population biotic interactions, where many of these interactions involved generalists. These results reveal differential responses of bacterial populations to lake mixing and highlight the role of generalist taxa in structuring an emergent community‐level response.  相似文献   

13.
Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-na?ve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.  相似文献   

14.
Humans are increasingly influencing global climate and regional predator assemblages, yet a mechanistic understanding of how climate and predation interact to affect fluctuations in prey populations is currently lacking. Here we develop a modelling framework to explore the effects of different predation strategies on the response of age-structured prey populations to a changing climate. We show that predation acts in opposition to temporal correlation in climatic conditions to suppress prey population fluctuations. Ambush predators such as lions are shown to be more effective at suppressing fluctuations in their prey than cursorial predators such as wolves, which chase down prey over long distances, because they are more effective predators on prime-aged adults. We model climate as a Markov process and explore the consequences of future changes in climatic autocorrelation for population dynamics. We show that the presence of healthy predator populations will be particularly important in dampening prey population fluctuations if temporal correlation in climatic conditions increases in the future.  相似文献   

15.
Norman Owen‐Smith 《Oikos》2015,124(11):1417-1426
Simple models coupling the dynamics of single predators to single prey populations tend to generate oscillatory dynamics of both predator and prey, or extirpation of the prey followed by that of the predator. In reality, such oscillatory dynamics may be counteracted by prey refugia or by opportunities for prey switching by the predator in multi‐prey assemblages. How these mechanisms operate depends on relative prey vulnerability, a factor ignored in simple interactive models. I outline how compositional, temporal, demographic and spatial heterogeneities help explain the contrasting effects of top predators on large herbivore abundance and population dynamics in species‐rich African savanna ecosystems compared with less species‐diverse northern temperate or subarctic ecosystems. Demographically, mortality inflicted by predation depends on the relative size and life history stage of the prey. Because all animals eventually die and are consumed by various carnivores, the additive component of the mortality inflicted is somewhat less than the predation rate. Prey vulnerability varies annually and seasonally, and between day and night. Spatial variation in the risk of predation depends on vegetation cover as well as on the availability of food resources. During times of food shortage, herbivores become prompted to occupy more risky habitats retaining more food. Predator concentrations dependent on the abundance of primary prey species may restrict the occurrence of other potential prey species less resistant to predation. The presence of multiple herbivore species of similar size in African savannas allows the top predator, the lion, to shift its prey selection flexibly dependent on changing prey vulnerability. Hence top–down and bottom–up influences on herbivore populations are intrinsically entangled. Models coupling the population dynamics of predators and prey need to accommodate the changing influences of prey demography, temporal variation in environmental conditions, and spatial variation in the relative vulnerability of alternative prey species to predation. Synthesis While re‐established predators have had major impacts on prey populations in northern temperate regions, multiple large herbivore species typically coexist along with diverse carnivores in African savanna ecosystems. In order to explain these contrasting outcomes, certain functional heterogeneities must be recognised, including relative vulnerability of alternative prey, temporal variation in the risk of predation, demographic differences in susceptibility to predation, and spatial contrasts in exposure to predation. Food shortfalls prompt herbivores to exploit more risky habitats, meaning that top–down and bottom–up influences on prey populations are intrinsically entangled. Models coupling the interactive dynamics of predator and prey populations need to incorporate these varying influences on relative prey vulnerability.  相似文献   

16.
Here we report the first direct counts of soil bacteriophage and show that substantial populations of these viruses exist in soil (grand mean = 1.5 x 10(7) g(-1)), at least 350-fold more than the highest numbers estimated from traditional viable plaque counts. Adding pure cultures of a Serratia phage to soil showed that the direct counting methods with electron microscopy developed here underestimated the added phage populations by at least eightfold. So, assuming natural phages were similarly underestimated, virus numbers in soil averaged 1.5 x 10(8) g(-1), which is equivalent to 4% of the total population of bacteria. This high abundance was to some extent confirmed by hybridizing colonies grown on Serratia and Pseudomonas selective media with cocktails of phage infecting these bacteria. This showed that 8.9 and 3.9%, respectively, hybridized with colonies from the two media and confirmed the presence of phage DNA sequences in the cultivable fraction of the natural population. Thus, soil phage, like their aquatic counterparts, are likely to be important in controlling bacterial populations and mediating gene transfer in soil.  相似文献   

17.
Predation has been invoked as a factor synchronizing the population oscillations of sympatric prey species, either because predators kill prey unselectively (the Shared Predation Hypothesis; hereafter SPH), or because predators switch to alternative prey after a density decline in their main prey (the Alternative Prey Hypothesis; APH). A basic assumption of the APH is that the impact of predators on alternative prey depends more on the density of main prey than on the predator/alternative prey ratio. Both SPH and APH assume that the impact of predators on alternative prey is at least periodically strong enough to depress prey populations. To examine these assumptions, we utilized data from replicated field experiments in large areas where we reduced the breeding densities of avian predators during three years and the numbers of least weasels (Mustela nivalis) in two years when vole populations declined. In addition, we reduced the breeding densities of avian predators in two years when vole populations were high. The reduction of least weasels increased the abundance of their alternative prey, small birds breeding on the ground, but did not affect the abundance of common shrews (Sorex araneus). In years when vole populations declined, the reduction of avian predators increased the abundance of their alternative prey, common shrews and small birds. Therefore, vole‐eating predators do at least periodically depress the abundance of their alternative prey. At high vole densities, the reduction of avian predators did not increase the abundance of common shrews, although the ratio of avian predators to alternative prey was similar to years when vole populations declined, which supported APH. In contrast, the abundance of small birds increased after the reduction of avian predators also at high vole densities, which supported SPH. The manipulations had no obvious effect on the number of game birds, which are only occasionally killed by these small‐sized predators. We conclude that in communities where most predators are small or specialize on a single prey type, the synchronizing impact of predation is restricted to a few similar‐sized species.  相似文献   

18.
The presence of generalist predators is known to have important ecological impacts in several fields. They have wide applicability in the field of biological control. However, their role in the spatial distribution of predator and prey populations is still not clear. In this paper, the spatial dynamics of a predator–prey system is investigated by considering two different types of generalist predators. In one case, it is considered that the predator population has an additional food source and can survive in the absence of the prey population. In the other case, the predator population is involved in intraguild predation, i.e., the source of the additional food of the predator coincides with the food source of the prey population and thus both prey and predator populations compete for the same resource. The conditions for linear stability and Turing instability are analyzed for both the cases. In the presence of generalist predators, the system shows different pattern formations and spatiotemporal chaos which has important implications for ecosystem functioning not only in terms of their predictability, but also in influencing species persistence and ecosystem stability in response to abrupt environmental changes. This study establishes the importance of the consideration of spatial dynamics while determining optimal strategies for biological control through generalist predators.  相似文献   

19.
Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.  相似文献   

20.
Classic population models can often predict the dynamics of biological populations in nature. However, the adaptation process and learning mechanism of species are rarely considered in the study of population dynamics, due to the complex interaction of species, seasonal variation, spatial distribution or other factors. We use reinforcement learning algorithms to improve the existing individual-based ecosystem simulation algorithms, which allows species to spontaneously adjust their strategies according to a short period of experience and then feed back to improve their abilities to make action decisions. Our results show that the reinforcement learning of predators is beneficial to the stability of the ecosystem, and predators can learn to spontaneously form hunting patterns that surround their prey. The learning of prey makes the ecosystem oscillate and meanwhile leads to a higher risk of extinction for predators. When individuals are more likely to die, these herbivores rely on reproductive behavior to maintain their populations; when individuals live longer, herbivores spend more time eating to maintain their own survival. The co-reinforcement learning of predators and prey helps predators to find a more suitable way to survive with their prey, that is, the number of predators is more stable and larger than when only predator or only prey learns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号