首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.  相似文献   

2.
The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3′ untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.  相似文献   

3.
Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity.  相似文献   

4.
Replication of all known positive-strand RNA viruses occurs in replication complexes associated with intracellular membranes. The putative nucleoside triphosphate binding (NTB) protein of Tomato ringspot virus (ToRSV) contains a stretch of hydrophobic residues at its C terminus, suggesting that it may act as a membrane anchor for the replication complex. Anti-NTB antibodies detected two predominant proteins in membrane-enriched fractions (the 66-kDa NTB and 69-kDa NTB-VPg proteins) along with other, larger proteins. The proteins containing the NTB domain cofractionated with markers of the endoplasmic reticulum (ER) and with ToRSV-specific RNA-dependent RNA polymerase activity in sucrose gradients. ToRSV infection induced severe changes in the morphology of the ER in plants expressing an ER-targeted green fluorescent protein (ER-GFP), and proteins containing the NTB domain colocalized with ER-GFP in indirect immunofluorescence assays. The proteins containing the NTB domain have properties of integral membrane proteins. Proteinase K protection assays using purified membranes from infected plants revealed that although the central portion of the NTB domain is exposed to the cytoplasmic face of the membranes, an 8-kDa fragment, recognized by anti-VPg antibodies, is protected by the membranes. This fragment probably consists of the 3-kDa VPg and the 5-kDa stretch of hydrophobic residues at the C terminus of the NTB protein, suggesting a luminal location for the VPg in at least a portion of the molecules. These results provide evidence that proteins containing the NTB domain are transmembrane proteins associated with ER-derived membranes and support the hypothesis that one or several of the proteins containing the NTB domain anchor the replication complex to the ER.  相似文献   

5.
Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants.  相似文献   

6.
7.
The TOM1 gene of Arabidopsis thaliana encodes a putative multipass transmembrane protein which is necessary for the efficient multiplication of tobamoviruses. We have previously shown that mutations severely destructive to the TOM1 gene reduce tobamovirus multiplication to low levels but do not impair it completely. In this report, we subjected one of the tom1 mutants (tom1-1) to another round of mutagenesis and isolated a new mutant which did not permit a detectable level of tobamovirus multiplication. In addition to tom1-1, this mutant carried a mutation referred to as tom3-1. Positional cloning showed that TOM3 was one of two TOM1-like genes in Arabidopsis. Based on the similarity between the amino acid sequences of TOM1 and TOM3, together with the results of a Sos recruitment assay suggesting that both TOM1 and TOM3 bind tobamovirus-encoded replication proteins, we propose that TOM1 and TOM3 play parallel and essential roles in the replication of tobamoviruses.  相似文献   

8.
The tom2-1 mutation of Arabidopsis thaliana reduces the efficiency of intracellular multiplication of tobamoviruses. The tom2-1 mutant was derived from fast-neutron-irradiated seeds, and the original mutant line also carries ttm1, a dominant modifier that increases tobamovirus multiplication efficiency in a tobamovirus-strain-specific manner in the tom2-1 genetic background. Here, we show that the tom2-1 mutation involved a deletion of approximately 20 kb in the nuclear genome. The deleted region included two genes named TOM2A and TOM2B that were both associated with the tom2-1 phenotype, whereas ttm1 corresponded to the translocation of part of the deleted region that included intact TOM2B but not TOM2A. TOM2A encodes a 280 amino acid putative four-pass transmembrane protein with a C-terminal farnesylation signal, while TOM2B encodes a 122 amino acid basic protein. The split-ubiquitin assay demonstrated an interaction of TOM2A both with itself and with TOM1, an integral membrane protein of A.thaliana presumed to be an essential constituent of tobamovirus replication complex. The data presented here suggest that TOM2A is also an integral part of the tobamovirus replication complex.  相似文献   

9.
The mechanisms that direct positive-stranded RNA virus replication complexes to plant and animal cellular membranes are poorly understood. We describe a specific interaction between a replication protein of an RNA plant virus and membranes in vitro and in live cells. The tobacco etch virus (TEV) 6 kDa protein associated with membranes as an integral protein via a central 19 amino acid hydrophobic domain. In the presence or absence of other viral proteins, fluorescent fusion proteins containing the 6 kDa protein associated with large vesicular compartments derived from the endoplasmic reticulum (ER). Infection by TEV was associated with a collapse of the ER network into a series of discrete aggregated structures. Viral RNA replication complexes from infected cells were also associated with ER-like membranes. Targeting of TEV RNA replication complexes to membranous sites of replication is proposed to involve post-translational interactions between the 6 kDa protein and the ER.  相似文献   

10.
Positive-strand RNA virus replication complexes are universally associated with intracellular membranes, although different viruses use membranes derived from diverse and sometimes multiple organelles. We investigated whether unique intracellular membranes are required for viral RNA replication complex formation and function in yeast by retargeting protein A, the Flock House virus (FHV) RNA-dependent RNA polymerase. Protein A, the only viral protein required for FHV RNA replication, targets and anchors replication complexes to outer mitochondrial membranes in part via an N-proximal sequence that contains a transmembrane domain. We replaced the FHV protein A mitochondrial outer membrane-targeting sequence with the N-terminal endoplasmic reticulum (ER)-targeting sequence from the yeast NADP cytochrome P450 oxidoreductase or inverted C-terminal ER-targeting sequences from the hepatitis C virus NS5B polymerase or the yeast t-SNARE Ufe1p. Confocal immunofluorescence microscopy confirmed that protein A chimeras retargeted to the ER. FHV subgenomic and genomic RNA accumulation in yeast expressing ER-targeted protein A increased 2- to 13-fold over that in yeast expressing wild-type protein A, despite similar protein A levels. Density gradient flotation assays demonstrated that ER-targeted protein A remained membrane associated, and in vitro RNA-dependent RNA polymerase assays demonstrated an eightfold increase in the in vitro RNA synthesis activity of the ER-targeted FHV RNA replication complexes. Electron microscopy showed a change in the intracellular membrane alterations from a clustered mitochondrial distribution with wild-type protein A to the formation of perinuclear layers with ER-targeted protein A. We conclude that specific intracellular membranes are not required for FHV RNA replication complex formation and function.  相似文献   

11.
The assembly of viral RNA replication complexes on intracellular membranes represents a critical step in the life cycle of positive-strand RNA viruses. We investigated the role of the cellular chaperone heat shock protein 90 (Hsp90) in viral RNA replication complex assembly and function using Flock House virus (FHV), an alphanodavirus whose RNA-dependent RNA polymerase, protein A, is essential for viral RNA replication complex assembly on mitochondrial outer membranes. The Hsp90 chaperone complex transports cellular mitochondrial proteins to the outer mitochondrial membrane import receptors, and thus we hypothesized that Hsp90 may also facilitate FHV RNA replication complex assembly or function. Treatment of FHV-infected Drosophila S2 cells with the Hsp90-specific inhibitor geldanamycin or radicicol potently suppressed the production of infectious virions and the accumulation of protein A and genomic, subgenomic, and template viral RNA. In contrast, geldanamycin did not inhibit the activity of preformed FHV RNA replication complexes. Hsp90 inhibitors also suppressed viral RNA and protein A accumulation in S2 cells expressing an FHV RNA replicon. Furthermore, Hsp90 inhibition with either geldanamycin or RNAi-mediated chaperone downregulation suppressed protein A accumulation in the absence of viral RNA replication. These results identify Hsp90 as a host factor involved in FHV RNA replication and suggest that FHV uses established cellular chaperone pathways to assemble its RNA replication complexes on intracellular membranes.  相似文献   

12.
Gao L  Aizaki H  He JW  Lai MM 《Journal of virology》2004,78(7):3480-3488
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.  相似文献   

13.
The identification and characterization of host cell membranes essential for positive-strand RNA virus replication should provide insight into the mechanisms of viral replication and potentially identify novel targets for broadly effective antiviral agents. The alphanodavirus flock house virus (FHV) is a positive-strand RNA virus with one of the smallest known genomes among animal RNA viruses, and it can replicate in insect, plant, mammalian, and yeast cells. To investigate the localization of FHV RNA replication, we generated polyclonal antisera against protein A, the FHV RNA-dependent RNA polymerase, which is the sole viral protein required for FHV RNA replication. We detected protein A within 4 h after infection of Drosophila DL-1 cells and, by differential and isopycnic gradient centrifugation, found that protein A was tightly membrane associated, similar to integral membrane replicase proteins from other positive-strand RNA viruses. Confocal immunofluorescence microscopy and virus-specific, actinomycin D-resistant bromo-UTP incorporation identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. Selective membrane permeabilization and immunoelectron microscopy further localized protein A to outer mitochondrial membranes. Electron microscopy revealed 40- to 60-nm membrane-bound spherical structures in the mitochondrial intermembrane space of FHV-infected cells, similar in ultrastructural appearance to tombusvirus- and togavirus-induced membrane structures. We concluded that FHV RNA replication occurs on outer mitochondrial membranes and shares fundamental biochemical and ultrastructural features with RNA replication of positive-strand RNA viruses from other families.  相似文献   

14.
A number of hepatitis C virus (HCV) proteins, including NS5B, the RNA-dependent RNA polymerase, were detected in membrane fractions from Huh7 cells containing autonomously replicating HCV RNA replicons. These membrane fractions were used in a cell-free system for the analysis of HCV RNA replication. Initial characterization revealed a reaction in which the production of replicon RNA increased over time at temperatures ranging from 25 to 40 degrees C. Heparin sensitivity and nucleotide starvation experiments suggested that de novo initiation was occurring in this system. Both Mn2+ and Mg2+ cations could be used in the reaction; however, concentrations of Mn2+ greater than 1 mM were inhibitory. Compounds shown to inhibit recombinant NS3 and NS5B activity in vitro were found to inhibit RNA synthesis in the cell-free system. This system should be useful for biochemical analysis of HCV RNA synthesis by a multisubunit membrane-associated replicase and for evaluating potential antiviral agents identified in biochemical or cell-based screens.  相似文献   

15.
The mechanism and machinery of hepatitis C virus (HCV) RNA replication are still poorly understood. In this study, we labeled de novo-synthesized viral RNA in situ with bromouridine triphosphate (BrUTP) in Huh7 cells expressing an HCV subgenomic replicon. By immunofluorescence staining using an anti-BrUTP antibody and confocal microscopy, we showed that the newly synthesized HCV RNA was localized to distinct speckle-like structures, which also contain all of the HCV nonstructural (NS) proteins. These speckles are distinct from lipid droplets and are separated from the endoplasmic reticulum (ER), where some HCV NS proteins also reside. Membrane flotation analysis demonstrated that almost all of the NS5A and part of the NS5B proteins and all of the viral RNA were present in membrane fractions which are resistant to treatment with 1% NP-40 at 4 degrees C. They were cofractionated with caveolin-2, a lipid-raft-associated intracellular membrane protein, in the presence or absence of the detergent. In contrast, the ER-resident proteins were detergent soluble. These properties suggest that the membranes on which HCV RNA replication occurs are lipid rafts recruited from the intracellular membranes. The protein synthesis inhibitors cycloheximide and puromycin did not inhibit viral RNA synthesis, indicating that HCV RNA replication does not require continuous protein synthesis. We suggest that HCV RNA synthesis occurs on a lipid raft membrane structure.  相似文献   

16.
K Bienz  D Egger  T Pfister    M Troxler 《Journal of virology》1992,66(5):2740-2747
Two populations of membrane-bound replication complexes were isolated from poliovirus-infected HEp-2 cells by sucrose gradient centrifugation. The two fractions show similar ultrastructural features: the replication complex is enclosed in a rosettelike shell of virus-induced vesicles and contains a very tightly packed second membrane system (compact membranes). The vesicular fraction, which bands in 30% sucrose, contains replicative intermediate (RI) and 36S RNA. The fraction banding in 45% sucrose contains only minute amounts of RI and contains mainly 36S RNA, two-thirds of which is encapsidated. In vitro, the two fractions show similar RNA synthesizing capacities and produce 36S plus-strand RNA. Dissolving the membranes within and around synthetically active replication complexes with sodium deoxycholate abolishes the completion of 36S RNA but still allows elongation in the RI. Our findings suggest an architecture of the replication complex that has the nascent plus strands on the RI enclosed in the compact membranes and the replication forks wrapped additionally in protein. Plus-strand RNA can be localized by in situ hybridization with a biotinylated riboprobe between the replication complex and the rosette of the virus-induced vesicles. It was found that the progeny RNA strands are set free soon after completion from the replication complex at the sites where the compact membranes within the replication complex are in close contact with the surrounding virus-induced vesicles.  相似文献   

17.
18.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   

19.
Huh SU  Kim MJ  Ham BK  Paek KH 《The New phytologist》2011,191(3):746-762
? In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. ? To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. ? Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. ? These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.  相似文献   

20.
As a consequence of their bacterial origin, mitochondria contain β-barrel proteins in their outer membrane (OMM). These proteins require the translocase of the outer membrane (TOM) complex and the conserved sorting and assembly machinery (SAM) complex for transport and integration into the OMM. The SAM complex and the β-barrel assembly machinery (BAM) required for biogenesis of β-barrel proteins in bacteria are evolutionarily related. Despite this homology, we show that bacterial β-barrel proteins are not universally recognized and integrated into the OMM of human mitochondria. Selectivity exists both at the level of the TOM and the SAM complex. Of all of the proteins we tested, human mitochondria imported only β-barrel proteins originating from Neisseria sp., and only Omp85, the central component of the neisserial BAM complex, integrated into the OMM. PorB proteins from different Neisseria, although imported by the TOM, were not recognized by the SAM complex and formed membrane complexes only when functional Omp85 was present at the same time in mitochondria. Omp85 alone was capable of integrating other bacterial β-barrel proteins in human mitochondria, but could not substitute for the function of its mitochondrial homolog Sam50. Thus, signals and machineries for transport and assembly of β-barrel proteins in bacteria and human mitochondria differ enough to allow only a certain type of β-barrel proteins to be targeted and integrated in mitochondrial membranes in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号