首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The reaction mechanism for the hydroxylation of benzene and monofluorobenzene, catalysed by a ferryl-oxo porphyrin cation radical complex (compound) is described by electronic structure calculations in local spin density approximation. The active site of the enzyme is modelled as a six-coordinated (Por+)Fe(IV)O a2u complex with imidazole or H3CS as the axial ligand. The substrates under study are benzene and fluorobenzene, with the site of attack in para, meta and ortho position with respect to F. Two reaction pathways are investigated, with direct oxygen attack leading to a tetrahedral intermediate and arene oxide formation as a primary reaction step. The calculations show that the arene oxide pathway is distinctly less probable, that hydroxylation by an H3CS–coordinated complex is energetically favoured compared with imidazole, and that the para position with respect to F is the preferred site for hydroxylation. A partial electron transfer from the substrate to the porphyrin during the reaction is obtained in all cases. The resulting charge distribution and spin density of the substrates reveal the transition state as a combination of a cation and a radical σ-adduct intermediate with slightly more radical character in the case of H3CS as axial ligand. A detailed analysis of the orbital interactions along the reaction pathway yields basically different mechanisms for the modes of substrate–porphyrin electron transfer and rupture of the Fe–O bond. In the imidazole-coordinated complex an antibonding π*(Fe–O) orbital is populated, whereas in the H3CS–coordinated system a shift of electron density occurs from the Fe–O bond region into the Fe–S bond. Received: 1 July 1995 / Accepted: 18 December 1995  相似文献   

2.
The identification of the hydroxylated rat urinary metabolites of the 2-, 3- and 4-chlorobiphenyls and 2-, 3- and 4-bromobiphenyls has been determined by gas chromatographic mass spectrometric analysis of their corresponding methyl ether derivatives. The electron impact fragmentation patterns of the bromotheoxybiphenyls and chloromethoxybiphenyls were used to assign the position of the methyoxyl group (ortho, meta or para to the biphenyl bond); the mass spectra of the corresponding [2H5]halobiphenyls confirmed the sites of the hydroxylation by distinguishing between the halophenyl and phenyl rings. The results illustrated that ring hydroxylation occurs predominantly at the para positions of the biphenyl nucleus and at sites which are ortho and para to the halogen substituents. 4,4'-Dimethoxyhalobiphenyls are major urinary metabolites of the 2- and 3-halobiphenyls and the rapid formation of these metabolites is illustrated in a time course study which monitors the urinary metabolites formed after the separate coadministration of the isomeric chlorobiphenyl and bromobiphenyl substrates to rats.  相似文献   

3.
The hydroxylation of fluorobenzene and aniline, catalyzed by the porphyrin-Fe(III)-peroxide anion with either a cysteinate- or a histidyl-type of axial ligand as well as the hydroxylation of fluorobenzene, catalyzed by porphyrin-Fe(III)-hydroperoxide with a cysteinate-type of axial ligand as catalytic intermediates, have been investigated by electronic structure calculations in local spin-density approximation. Non-repulsive potential curves are, in contrast with porphyrin-Fe(III)-hydroperoxide, obtained only in the case of porphyrin-Fe(III)-peroxide anion as catalytic intermediate. The mutual substrate-porphyrin orientation with a dihedral angle between the plane of the substrate and the porphyrin plane of 45 degrees is more favorable compared with the parallel orientation between these two planes. This orientation differs for the case of fluorobenzene hydroxylation from the corresponding one calculated by us with the ferryl-oxo-pi-cation radical complex as a catalytic intermediate. The calculated reaction profiles show also the effectiveness of the histidyl-type coordinated porphyrin-Fe(III)-peroxide involved in P450 type of hydroxylation reactions. The calculations demonstrate the predominant role of the O1-O2 moiety of the porphyrin-Fe(III)-peroxide anion in the hydroxylation process of the substrates. The results indicate that the porphyrin-Fe(III)-peroxide anion is an effective catalytic species in hydroxylation reactions. In all the studied cases irrespective of the substrate and the nature of the axial ligand, the potential curves reach minimum at approximately 130-140 pm, expressing the length of an aromatic C-O bond.  相似文献   

4.
Benzene-1,2-, 1,3-, and 1,4-di-N-substituted carbamates (1-15) are synthesized as the constrained analogs of gauche, eclipsed, and anti conformations, respectively, for the glycerol backbones of triacylglycerol. Carbamates 1-15 are characterized as the pseudo substrate inhibitors of cholesterol esterase. Long chain carbamates are more potent inhibitors than short chain ones. Comparison of different geometries for benzene-di-substituted carbamates, such as benzene-1,2-di-N-octylcarbamate (3) (ortho-3), benzene-1,3-di-N-octylcarbamate (8) (meta-8), and benzene-1,4-di-N-octylcarbamates (13) (para-13), indicates that inhibitory potencies are as followed: meta-8 > para-13 > ortho-3. Therefore, we suggest that the preferable conformation for the C(sn-1)-O/C(sn-2)-O glycerol backbone in the enzyme-triacylgycerol complex is the eclipsed conformation. Meanwhile, kinetic data indicate that among ortho, meta, and para carbamates, meta carbamates most resemble the substrate cholesterol ester.  相似文献   

5.
R P Hanzlik  K Hogberg  C M Judson 《Biochemistry》1984,23(13):3048-3055
The aromatic hydroxylation of six pairs of selectively deuterated monosubstituted benzenes was investigated with rat liver microsomes of various induction states. The substrates studied included 3,5-D2C6H3X (1a-6a) and 2,4,6-D3C6H2X (1b-6b), where X = Br, CN, NO2, OCH3, CH3, or Ph, respectively. The deuterium content of the ortho, meta, and para hydroxylated metabolites, as well as side chain oxidation products from 4 and 5, was determined by capillary gas chromatography-mass spectroscopy. These data were analyzed according to a hypothetical model in which a molecule of substrate can undergo either direct aromatic hydroxylation (defined as obligatory and complete loss of deuterium from the site of hydroxylation) or indirect aromatic hydroxylation (defined as the obligatory and complete shift of deuterium to an adjacent position, followed by its partial loss as governed by a kinetic deuterium isotope effect). From this and other analyses of the data the following conclusions were reached. (1) The relative extent of meta hydroxylation increased and the total yield of metabolites decreased as the substituents X became more electron withdrawing. (2) The induction state of the microsomes altered the regioselectivity of hydroxylation (2, 3, 4, or side chain) noticeably and predictably but had little or no effect on the retention or loss of deuterium during each hydroxylation. (3) With each substrate and at each ring position hydroxylation was found to occur by a combination of direct and indirect mechanisms. (4) The relative importance of direct vs. indirect mechanisms did not vary in a simple manner with either the position of hydroxylation or the nature of the substituent X.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A group of regioisomeric phenylethynylbenzenesulfonamides possessing a COX-2 SO2NH2 pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 substituted-phenyl (H, OMe, OH, Me, F) group, were synthesized and evaluated as inhibitors of the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) isozymes. The target 1,2-diphenylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. In vitro COX-1/-2 isozyme inhibition structure-activity data showed that COX-1/-2 inhibition and the COX selectivity index (SI) are sensitive to the regioisomeric placement of the COX-2 SO2NH2 pharmacophore where the COX-2 potency order for the benzenesulfonamide regioisomers was generally meta>para and ortho. Among this group of compounds, the in vitro COX-1/-2 isozyme inhibition studies identified 3-(2-phenylethynyl)benzenesulfonamide (10a) as a COX-2 inhibitor (COX-2 IC50=0.45 microM) with a good COX-2 selectivity (COX-2 SI=70). In contrast, 2-[2-(3-fluorophenyl)ethynyl]benzenesulfonamide (11c) possessing a SO2NH2 COX-2 pharmacophore at the ortho-position of the C-1 phenyl ring exhibited COX-1 inhibition and selectivity (COX-1 IC50=3.6 microM). A molecular modeling study where 10a was docked in the binding site of COX-2 shows that the meta-SO2NH2 COX-2 pharmacophore was inserted inside the COX-2 secondary pocket (Arg513, Phe518, Val523, and His90). Similar docking of 10a within the COX-1 binding site shows that the meta-SO2NH2 pharmacophore is unable to interact with the respective amino acid residues in COX-1 that correspond to those near the secondary pocket in COX-2 due to the presence of the larger Ile523 in COX-1 that replaces Val523 in COX-2.  相似文献   

7.
We have shown that CdS and CdSe nanoparticles can act as very efficient and highly chemoselective photocatalysts for the reduction of aromatic azides to aromatic amines. In several cases, the reaction proceeds with quantum yields near 0.5, which approaches the theoretical maximum for a two-electron process. The wide scope of the reaction was confirmed with compounds containing electron withdrawing (-NO(2), CO(2)R, COR) and electron donating groups (-OMe, -R, -Cl) at the para-, meta-, and ortho-positions. Remarkably, the reaction is relatively insensitive to the electron demands of the substituent. However, azides with meta-substituents give slightly lower yields than those with the same substituent at the ortho- or para-position.  相似文献   

8.
Möbitz H  Boll M 《Biochemistry》2002,41(6):1752-1758
Benzoyl-CoA reductase from the anaerobic bacterium Thauera aromatica catalyzes the ATP-driven two-electron reduction of the aromatic moiety of benzoyl-CoA. A Birch mechanism involving alternate one-electron and one-proton transfer steps to the aromatic ring was previously proposed for benzoyl-CoA reductase. Due to the high redox barrier, the first electron transfer step yielding a radical anion is considered the rate-limiting step in this reaction. Focusing on the mechanism of substrate reduction, this work combines the kinetic analysis of a number of substrate analogues with a model based on the ab initio calculated electron density of the radical anion of benzoyl-CoA, a transition state model of the proposed Birch mechanism. Both K(m) and k(cat) of ortho-substituted benzoyl-CoA increased in parallel with the substituent's acceptor strength (F > Cl = H > OH > NH(2)). Among the isomers of monofluorobenzoyl-CoA, reduction rates decreased in the following order: ortho > meta > para; the K(m) values increased in the following order: meta > ortho > para. Five-ring heteroaromatic acid thiol esters were reduced in the following order: thiophene > furan > pyrrole; the 2-isomers are reduced much faster than the 3-isomers. Most of these results could be rationalized by the model. A Hammett plot indicated that the reaction mechanism is only slightly polar, suggesting the involvement of a partial protonation of the carbonyl oxygen of benzoyl-CoA and/or a simultaneous transfer of the first electron and proton. Surprisingly, benzoyl-CoA reductase exhibited a hydrogen kinetic isotope effect on k(cat) for pyridine-2-carbonyl-CoA (2.1) but only a negligible one for benzoyl-CoA (1.2), indicating that pyridine-2-carbonyl-CoA reduction proceeds according to a varied mechanism.  相似文献   

9.
Mitchell KH  Studts JM  Fox BG 《Biochemistry》2002,41(9):3176-3188
Toluene 4-monooxygenase (T4MO) is a diiron hydroxylase that exhibits high regiospecificity for para hydroxylation. This fidelity provides the basis for an assessment of the interplay between active site residues and protein complex formation in producing an essential biological outcome. The function of the T4MO catalytic complex (hydroxylase, T4moH, and effector protein T4moD) is evaluated with respect to effector protein concentration, the presence of T4MO electron-transfer components (Rieske ferredoxin, T4moC, and NADH oxidoreductase), and use of mutated T4moH isoforms with different hydroxylation regiospecificities. Steady-state kinetic analyses indicate that T4moC and T4moD form complexes of similar affinity with T4moH. At low T4moD concentrations, the steady-state hydroxylation rate is linearly dependent on T4moD-T4moH complex formation, whereas regiospecificity and the coupling efficiency between NADH consumption and hydroxylation are associated with intrinsic properties of the T4moD-T4moH complex. The optimized complex gives both efficient coupling and high regiospecificity with p-cresol representing >96% of total products from toluene. Similar coupling and regiospecificity for para hydroxylation are obtained with T3buV (an effector protein from a toluene 3-monooxygenase), demonstrating that effector protein binding does not uniquely determine or alter the regiospecificity of toluene hydroxylation. The omission of T4moD causes an approximately 20-fold decrease in hydroxylation rate, nearly complete uncoupling, and a decrease in regiospecificity so that p-cresol represents approximately 60% of total products. Similar shifts in regiospecificity are observed in oxidations of alternative substrates in the absence or upon the partial removal of either T4moD or T3buV from toluene oxidations. The mutated T4moH isoforms studied have apparent V(max)/K(M) specificities differing by approximately 2-4-fold and coupling efficiencies ranging from 88% to 95%, indicating comparable catalytic function, but also exhibit unique regiospecificity patterns for all substrates tested, suggesting unique substrate binding preferences within the active site. The G103L isoform has enhanced selectivity for ortho hydroxylation with all substrates tested except nitrobenzene, which gives only m-nitrophenol. The regiospecificity of the G103L isoform is comparable to that observed from naturally occurring variants of the toluene/benzene/o-xylene monooxygenase subfamily. Evolutionary and mechanistic implications of these findings are considered.  相似文献   

10.
The relationship between the structure and activity of meta- and para-hydroxylated monophenols was studied during their tyrosinase-catalysed hydroxylation and the rate-limiting steps of the reaction mechanism were identified. The para-hydroxylated substrates permit us to study the effect of a substituent (R) in the carbon-1 position (C-1) of the benzene ring on the nucleophilic attack step, while the meta group permits a similar study of the effect on the electrophilic attack step. Substrates with a -OCH3 group on C-1, as p-hydroxyanisol (4HA) and m-hydroxyanisol (3HA), or with a -CH2OH group, as p-hydroxybenzylalcohol (4HBA) and m-hydroxybenzylalcohol (3HBA), were used because the effect of the substituent (R) size was assumed to be similar. However, the electron-donating effect of the -OCH3 group means that the carbon-4 position (C-4) is favoured for nucleophilic attack (para-hydroxylated substrates) or for electrophilic attack (meta-hydroxylated substrates). The electron-attracting effect of the -CH2OH group has the opposite effect, hindering nucleophilic (para) or electrophilic (meta) attack of C-4. The experimental data point to differences between the maximum steady-state rate (V(M)Max) of the different substrates, the value of this parameter depends on the nucleophilic and electrophilic attack. However, differences are greatest in the Michaelis constants (K(M)m), with the meta-hydroxylated substrates having very large values. The catalytic efficiency k(M)cat/K(M)m is much greater for thepara-hydroxylated substrates although it varies greatly between one substrate and the other. However, it varies much less in the meta-hydroxylated substrates since this parameter describes the power of the nucleophilic attack, which is weaker in the meta OH. The large increase in the K(M)m of the meta-hydroxylated substrates might suggest that the phenolic OH takes part in substrate binding. Since this is a weaker nucleophil than the para-hydroxylated substrates, the binding constant decreases, leading to an increase in K(M)m. The catalytic efficiency of tyrosinase on a monophenol (para or meta) is directly related to the nucleophilic power of the oxygen of the phenolic OH. The oxidation step is not limiting since if this were the case, the para and meta substrates would have the same V(M)max. The small difference between the absolute values of V(M)max suggests that the rate constants of the nucleophilic and electrophilic attacks are on the same order of magnitude.  相似文献   

11.
The regiospecificity of hydroxylation of C2-halogenated phenols by Rhodococcus opacus 1G was investigated. Oxidative defluorination at the C2 position ortho with respect to the hydroxyl moiety was preferred over hydroxylation at the non-fluorinated C6 position for all 2-fluorophenol compounds studied. Initial hydroxylation of 2,3, 5-trichlorophenol resulted in the exclusive formation of 3, 5-dichlorocatechol. These results indicate that, in contrast to all other phenol ortho-hydroxylases studied so far, phenol hydroxylase from R. opacus 1G is capable of catalyzing preferential oxidative defluorination but also oxidative dechlorination.  相似文献   

12.
The nitroarene dioxygenases are in the class of Rieske iron-containing oxygenases that incorporate atmospheric oxygen into substrates via electrophilic attack on the substrate. In their native role, the nitroarene dioxygenases start degradative pathways by hydroxylating nitro-substituted, and adjacent unsubstituted carbons of nitroaromatic compounds. The reaction yields the corresponding nitro-cis-cyclohexadienediol, which is unstable and spontaneously re-aromatizes to form a catechol and nitrite. In bacterial metabolism, the specificity of the hydroxylation determines subsequent steps in degradation pathways. Experiments were done to find whether the specificity could be exploited to direct the hydroxylation of multiply substituted aromatic substrates and thereby produce novel catechols. Recombinant strains carrying genes for nitroarene dioxygenases were used for transformation of various substituted nitroaromatic compounds. The reactions were analyzed using HPLC to track substrate consumption and product formation, then GC–MS and NMR to identify the reaction products. A number of substituted catechols were obtained using the recombinant biocatalysts. The nitro-substituted carbon was the primary site for dioxygenase hydroxylation. When substrates included nitro and halogen substituents, the halogen-substituted positions were also targeted, but less frequently than the nitro-substituted site. The production of catechols was limited in batch fermentations, likely due to toxicity of the quinones that result from air oxidation of catechols. The nitroarene dioxygenases will serve as catalysts for direct synthesis of highly substituted catechols, however, the reaction conditions must be engineered to overcome product toxicity and allow sustained accumulation of catecholic products.  相似文献   

13.
Mn porphyrins are among the most efficient SOD mimics with potency approaching that of SOD enzymes. The most potent ones, Mn(III) N-alkylpyridylporphyrins bear positive charges in a close proximity to the metal site, affording thermodynamic and kinetic facilitation for the reaction with negatively charged superoxide. The addition of electron-withdrawing bromines onto beta-pyrrolic positions dramatically improves thermodynamic facilitation for the O2*- dismutation. We have previously characterized the para isomer, Mn(II)Br(8)TM-4-PyP(4+) [Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin]. Herein we fully characterized its meta analogue, Mn(II)Br(8)TM-3-PyP(4+) with respect to UV/vis spectroscopy, electron spray mass spectrometry, electrochemistry, O2*- dismutation, metal-ligand stability, and the ability to protect SOD-deficient Escherichia coli in comparison with its para analogue. The increased electron-deficiency of the metal center stabilizes Mn in its +2 oxidation state. The metal-centered Mn(III)/Mn(II) reduction potential, E((1/2))=+468 mV vs NHE, is increased by 416 mV with respect to non-brominated analogue, Mn(III)TM-3-PyP(5+) and is only 12 mV less positive than for para isomer. Yet, the complex is significantly more stable towards the loss of metal than its para analogue. As expected, based on the structure-activity relationships, an increase in E((1/2)) results in a higher catalytic rate constant for the O2*- dismutation, log k(cat)> or =8.85; 1.5-fold increase with respect to the para isomer. The IC(50) was calculated to be < or =3.7 nM. Manipulation of the electron-deficiency of a cationic porphyrin resulted, therefore, in the highest k(cat) ever reported for a metalloporphyrin, being essentially identical to the k(cat) of superoxide dismutases (log k(cat)=8.84-9.30). The positive kinetic salt effect points to the unexpected, unique and first time recorded behavior of Mn beta-octabrominated porphyrins when compared to other Mn porphyrins studied thus far. When species of opposing charges react, the increase in ionic strength invariably results in the decreased rate constant; with brominated porphyrins the opposite was found to be true. The effect is 3.5-fold greater with meta than with para isomer, which is discussed with respect to the closer proximity of the quaternary nitrogens of the meta isomer to the metal center than that of the para isomer. The potency of Mn(II)Br(8)TM-3-PyP(4+) was corroborated by in vivo studies, where 500 nM allows SOD-deficient E. coli to grow >60% of the growth of wild type; at concentrations > or =5 microM it exhibits toxicity. Our work shows that exceptionally high k(cat) for the O2*- disproportionation can be achieved not only with an N(5)-type coordination motif, as rationalized previously for aza crown ether (cyclic polyamines) complexes, but also with a N(4)-type motif as in the Mn porphyrin case; both motifs sharing "up-down-up-down" steric arrangement.  相似文献   

14.
The metabolism by rat hepatic microsomal cytochrome P-450-dependent monooxygenases of several model substrates that are specific for individual isoforms of cytochrome P-450 and the metabolism by these monooxygenases of two structurally related isomers of hexachlorobiphenyl was studied. The most striking result was that 2,2',3,5,5',6-hexachlorobiphenyl was metabolised in vitro at the rate of 4.5 pmol/mg microsomal protein per min, whereas the other isomer 2,2',3,4,4',6-hexachlorobiphenyl was not metabolised at detectable rates. This finding provides strong evidence for a regioselective oxidative attack by cytochrome P-450-dependent monooxygenase with preferential insertion of oxygen at meta-para unsubstituted carbon atoms. Investigations into the mechanism of this oxidative attack suggest that the ortho hydrogen atom at carbon atom C-6' of 2,2',3,4,4',6-hexachlorobiphenyl was associated with a lower charge (0.075 e) compared with the meta or para hydrogen atoms at carbon atom C-3' and C-4' of 2,2',3,5,5',6-hexachlorobiphenyl (0.086 e). In addition, measurement of the main C-C bond length using MOPAC calculations and X-ray crystalographic data suggests significant differences in the bond-length distance, with the main bond lengths of 1.390, 1.385 and 1.374 A, respectively, for bridgehead to ortho (C1-C2), for ortho to meta (C2-C3), and for meta to para bonds. These results provide evidence that the preferential meta-para oxidative attack is linked to a shorter carbon-carbon bond length and a more positive charge distribution of the corresponding hydrogen atoms.  相似文献   

15.
Noncompetitive and competitive intermolecular deuterium isotope effects were measured for the cytochrome P-450 catalyzed hydroxylation of a series of selectively deuterated chlorobenzenes. An isotope effect of 1.27 accompanied the meta hydroxylation of chlorobenzene-2H5 as determined by two totally independent methods (EC-LC and GC-MS assays). All isotope effects associated with the meta hydroxylation of chlorobenzenes-3,5-2H2 and -2,4,6-2H3 were approximately 1.1. In contrast, competitive isotope studies on the ortho and para hydroxylation of chlorobenzenes-4-2H1, -3,5-2H2, and -2,4,6-2H3 resulted in significant inverse isotope effects (approximately 0.95) when deuterium was substituted at the site of oxidation whereas no isotope effect was observed for the oxidation of protio sites. These results eliminate initial epoxide formation and initial electron abstraction (charge transfer) as viable mechanisms for the cytochrome P-450 catalyzed hydroxylation of chlorobenzene. The results, however, can be explained by a mechanism in which an active triplet-like oxygen atom adds to the pi system in a manner analogous to that for olefin oxidation. The resulting tetrahedral intermediate can then rearrange to phenol directly or via epoxide or ketone intermediates.  相似文献   

16.
Enterolactone (ENL) and enterodiol (END) are found in high concentrations in human body fluids after ingestion of flaxseed and whole-grain products. Although much interest is presently focused on these mammalian lignans because of their putative beneficial health effects, little is known about their metabolic fate in humans. We have now identified nine novel metabolites of ENL and END in the urine of female and male humans ingesting flaxseed for five days. The chemical structures of six ENL metabolites and of three END metabolites were elucidated by GC/MS analysis and comparison with authentic reference compounds obtained by chemical synthesis. The six identified metabolites of ENL were the products of monohydroxylation at the para-position and at both ortho-positions of the parent hydroxy group of either aromatic ring. Likewise, the three END metabolites were formed through aromatic monohydroxylation at the para- and ortho-positions. The biological significance of these metabolites remains to be established.  相似文献   

17.
The interaction of the Cu(II), Ni(II) and Co(III) complexes of the following six water-soluble cationic porphyrins with calf thymus DNA, poly(dG-dC)2 and poly(dA-dT)2 was studied by UV-visible and resonance Raman spectroscopy: tetrakis(2-N-) and (3-N-methylpyridyl) porphyrin (1, 2); monophenyl-tris(4-N-methylpyridyl)porphyrin (4); cis- and trans-diphenyl-bis (4-N-methylpyridyl)porphyrin (5, 6). The binding to nucleic acids was compared with that of tetrakis(4-N-methylpyridyl)porphyrin (3). If the N(+)-CH3 group is moved from the para (3) to the meta position (2), binding of the free porphyrin as well as that of the metal complexes is only gradually modified; thus, the square-planar Cu- and Ni-2 are intercalated at the G-C site whereas Co-2 is groove-bound at A-T. Additionally, Ni-2 is probably also intercalated at the A-T site. When the N(+)-CH3 group is located at ortho position (1), the high rotation barrier of the 2-N-methylpyridyl group prevents intercalation of Cu- and Ni-1, resulting in weak outside binding. At ionic strength mu = 0.2, there is no evidence of significant interaction of Co-1 with any of the polynucleotides. When the charged N-methylpyridyl groups in 3 are subsequently replaced by phenyl groups (4, 5/6), the tendency of the Cu(II) and Ni(II) complexes to bind to the outside of the helix or to intercalate only partially increases at the expense of full intercalation. The coulombic attraction remains strong, no significant differences can be detected between 3, 4, 5, and 6. Ni-4 binds to poly(dA-dT)2 in the same complicated manner as Ni-3. The outside-binding in Co-4, -5 and -6 differs slightly from that in Co-2 and Co-3.  相似文献   

18.
S. M. Pershin 《Biophysics》2013,58(5):723-730
Quantum differences of ortho/para H2O spin-isomers are considered as a key factor that determines water property taking into account the ortho/para conversion and the unbalanced (1: 1) ortho/para ratio in water. The biophysical mechanism of jump in the permeability of erythrocytes through a microcapillary at 36.6°C in water-based physiological solution and at 37.4°C in heavy water is proposed and discussed.  相似文献   

19.
H A Schreuder  W G Hol  J Drenth 《Biochemistry》1990,29(12):3101-3108
The flavoprotein p-hydroxybenzoate hydroxylase has been studied extensively by biochemical techniques by others and in our laboratory by X-ray crystallography. As a result of the latter investigations, well-refined crystal structures are known of the enzyme complexed (i) with its substrate p-hydroxybenzoate and (ii) with its reaction product 3,4-dihydroxybenzoate and (iii) the enzyme with reduced FAD. Knowledge of these structures and the availability of the three-dimensional structure of a model compound for the reactive flavin 4a-hydroperoxide intermediate has allowed a detailed analysis of the reaction with oxygen. In the model of this reaction intermediate, fitted to the active site of p-hydroxybenzoate hydroxylase, all possible positions of the distal oxygen were surveyed by rotating this oxygen about the single bond between the C4a and the proximal oxygen. It was found that the distal oxygen is free to sweep an arc of about 180 degrees in the active site. The flavin 4a-peroxide anion, which is formed after reaction of molecular oxygen with reduced FAD, might accept a proton from an active-site water molecule or from the hydroxyl group of the substrate. The position of the oxygen to be transferred with respect to the substrate appears to be almost ideal for nucleophilic attack of the substrate onto this oxygen. The oxygen is situated above the 3-position of the substrate where the substitution takes place, at an angle of about 60 degrees with the aromatic plane, allowing strong interactions with the pi electrons of the substrate. Polarization of the peroxide oxygen-oxygen bond by the enzyme may enhance the reactivity of flavin 4a-peroxide.  相似文献   

20.
For the purpose of evaluating substitution effects in the ortho, meta or para positions of the aromatic ring of tyrosine or phenylalanine in position 2 of oxytocin on uterotonic activity in vitro in the presence and absence of magnesium ions, six new analogues of oxytocin ([D- and L-m-methylphenylalanine2]oxytocin, [D- and L-m-methoxyphenylalanine2]oxytocin and [D- and L-o-methyltyrosine2]-oxytocin) were synthesized and several previously described analogues resynthesized. For the phenylalanine series, it is found that, in the absence of magnesium ions, substitution of the ortho and meta positions leads to loss of intrinsic activity (the analogues are antagonists) in contrast to the para position. In the tyrosine series, only methyl substitution in the meta position has this effect (substitution of ortho position only attenuates the agonistic biological activity). Addition of Mg ions restores to a certain degree the agonistic activity in the case of the o-methylphenylalanine analogue and enhances the agonistic activity of o-methyltyrosine oxytocin. All other analogues keep the original qualities as in the absence of Mg. Molecular modelling calculations of the structure of the above analogues was carried out to help explain these findings of the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号