首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol to monitor respiration as O2 consumption in soil slurries using the Strathtox® respirometer was developed and tested on four soils from brownfield sites. Respiration rates (mg l−1 h−1) of soil slurries in the Strathtox® were compared with rates (μl min−1) of field moist soils analysed using the Columbus Oxymax® ER10 respirometer. One of the soils (99612B), historically contaminated with diesel, was further studied by monitoring the effect of inorganic NH4NO3 liquid nutrient on enhancing respiration rate. Soil microcosms were monitored continuously on the Oxymax® or sampled at 24, 48 and 72 h intervals, prepared as soil slurries, and analysed on the Strathtox®. On the full-scale remediation project (∼6000 m3) soil 99612B was treated as a biopile with spent mushroom compost (SMC) amendment and respiration rates monitored in samples over an 8-week period. In the laboratory microcosm experiment and full-scale bioremediation treatment described, correlation was found for respiration rates between the two respirometry systems.  相似文献   

2.
Two experiments were conducted to evaluate a commercially available supplemental N source for beef cattle (Fermenten®; Church & Dwight Co., Inc., Princeton, NJ, USA). The first experiment evaluated kinetics of in vitro NH3-N release using batch cultures of rumen fluid incubated with: control (no N added), soybean meal, urea, and Fermenten®. Ammonia-N was measured at 0, 0.5, 2, 4, 6, 8, 12 and 24 h after incubation began. A treatment by time interaction (P<0.01) occurred in which, during the initial 2 h, Fermenten® cultures had the highest (P<0.01) NH3-N but, from 4 to 24 h, the highest (P<0.01) NH3-N concentrations were with urea-incubated cultures. The total increase in NH3-N concentrations from 0 to 24 h of incubation was less for Fermenten® (P<0.01) than for the soybean meal and urea. The second experiment assessed effects of Fermenten® supplementation on growth, blood parameters, voluntary forage intake and reproductive performance of beef heifers. Sixty heifers, stratified by initial body weight (BW), were randomly allocated to one of two treatments that consisted of iso-nitrogenous grain-based supplements containing either Fermenten® (72 g/kg, as-fed) or urea (9.7 g/kg, as-fed). Supplements were offered three times weekly at a rate of 2.4 kg of dry matter per heifer daily. Shrunk BW was measured on days 0 and 112 for calculation of daily body weight gain. Body volume measurements were completed on days 0, 28, 56, 84 and 112, whereas pelvic area was assessed on days 0, 56 and 112. Blood samples were collected on days 28, 56, 84 and 112 for analysis of metabolites and hormones. On day 56, 2 heifers, which were randomly selected from each pasture, were placed in individual feeding stations for 26 days to determine treatment effects on voluntary forage intake. On day 112, all heifers were grouped by treatment and exposed to bulls for 60 days. Fewer heifers offered the Fermenten® supplement attained puberty (P<0.05) and became pregnant during the study compared to heifers fed urea (0.60 and 0.93, respectively; P<0.01). Addition of Fermenten® to batch cultures of rumen fluid rapidly increased NH3-N concentrations, whereas further increases occurred in a slower and steady rate. Beef heifers fed a supplement containing Fermenten® had similar growth and development, but inferior reproductive performance, than heifers fed a supplement containing urea.  相似文献   

3.
Decomposition rates of Phragmites australis, Carex riparia, Nuphar luteum and Salvinia natans and benthic processes were measured from December 2003 to December 2004 in a shallow wetland (Paludi di Ostiglia, Northern Italy) by means of litter bags and intact cores incubations. Decay rate was highest for N. luteum (k = 0.0152 d−1), intermediate for S. natans (k = 0.0041 d−1) and similar for P. australis (k = 0.0027 d−1) and C. riparia (k = 0.0028 d−1).Benthic metabolism followed a seasonal pattern with summer peaks of O2 demand and TCO2, CH4 and NH4+ efflux whilst soluble reactive phosphorus (SRP) fluxes were negligible also under hypoxic conditions, indicating that P was mainly retained by sediment. The initial C:P ratio was similar in N. luteum and S. natans (170) and significantly lower than that of P. australis and C. riparia (360). During the detritus decay P was progressively lost by N. luteum and S. natans tissues, whereas, after an initial leaching, it was probably re-used during the microbial decomposition of the more refractory P. australis and C. riparia detritus. Nuphar luteum, P. australis and S. natans had comparable initial C:N mass ratio (15), significantly lower than that of C. riparia (26). The C:N ratio was rather constant for N. luteum (12.9 ± 1.5) and S. natans (14.6 ± 0.9), decreased slightly to below 20 for C. riparia and increased up to 30 for P. australis. Overall, differences among species were likely due to the recalcitrance of decomposing detritus, whilst process rates were controlled by limitation of microbial processes by nutrients and electron acceptor availability.  相似文献   

4.
Various ecophysiological investigations on carnivorous plants in wet soils are presented. Radial oxygen loss from roots of Droseraceae to an anoxic medium was relatively low 0.02 – 0.07 mol(O2) m– 2 s–1 in the apical zone, while values of about one order of magnitude greater were found in both Sarracenia rubra roots and Genlisea violacea traps. Aerobic respiration rates were in the range of 1.6 – 5.6 mol kg–1 (f.m.) s–1 for apical root segments of seven carnivorous plant species and 0.4 – 1.1 mol kg–1 (f.m.) s–1 for Genlisea traps. The rate of anaerobic fermentation in roots of two Drosera species was only 5 – 14 % of the aerobic respiration. Neither 0.2 mM NaN3 nor 0.5 mM KCN influenced respiration rate of roots and traps. In all species, the proportion of cyanide-resistant respiration was high and amounted to 65 – 89 % of the total value. Mean rates of water exudation from excised roots of 12 species ranged between 0.4 – 336 mm 3 kg–1 (f.m.) s–1 with the highest values being found in the Droseraceae. Exudation from roots was insensitive to respiration inhibitors. No significant difference was found between exudation rates from roots growing in situ in anoxic soil and those kept in an aerated aquatic medium. Carnivorous plant roots appear to be physiologically very active and well adapted to endure permanent soil anoxia.  相似文献   

5.
Glassy carbon (GC) electrode was modified using multi-wall carbon nanotubes (MWCNTs), quercetin (Q) and Nafion® in this sequence. The thus modified electrode was used for the detection of dopamine (DA) in the presence of equimolar ascorbic acid (AA). It is demonstrated in this study that MWCNTs can increase the current response of DA by five-fold and Q can reduce the oxidation overpotential of DA by about 60 mV, compared to these parameters obtained with a bare GC electrode. It is also shown that a layer of Nafion® can virtually eliminate the interference of AA for the detection of DA. The GC/MWCNTs/Q/Nafion® electrode (hereafter also called composite electrode) shows a current density of about 900 μA cm−2 for DA, compared to the value of 80 μA cm−2 of the GC electrode and to the value of 390 μA cm−2 of the GC/MWCNTs electrode. The 11-fold enhancement in the sensitivity of the GC electrode for DA determination is attributed to the composite modification of the electrode, and is substantiated through various cyclic voltammetric experiments. Cyclic voltammetry (CV) and linear sweep voltammetry were used to characterize the electrodes. Calibration curves of batch and flow systems were obtained by amperometry for the detection of DA. Additionally, the composite modified electrode was tested with a human serum sample for the determination of DA and was found to be promising at our preliminary experiments.  相似文献   

6.
The sister chromatid exchange (SCE) frequency, the cell-cycle progression analysis, and the single cell gel electrophoresis technique (SCGE, comet assay) were employed as genetic end-points to investigate the geno- and citotoxicity exerted by dicamba and one of its commercial formulation banvel® (dicamba 57.71%) on Chinese hamster ovary (CHO) cells. Log-phase cells were treated with 1.0–500.0 μg/ml of the herbicides and harvested 24 h later for SCE and cell-cycle progression analyses. All concentrations assessed of both test compounds induced higher SCE frequencies over control values. SCEs increased in a non-dose-dependent manner neither for the pure compound (r = 0.48; P > 0.05) nor for the commercial formulation (r = 0.58, P > 0.05). For the 200.0 μg/ml and 500.0 μg/ml dicamba doses and the 500.0 μg/ml banvel® dose, a significant delay in the cell-cycle progression was found. A regression test showed that the proliferation rate index decreased as a function of either the concentration of dicamba (r = −0.98, P < 0.05) or banvel® (r = −0.88, P < 0.01) titrated into cultures in the 1.0–500.0 μg/ml dose-range. SCGE performed on CHO cells after a 90 min pulse-treatment of dicamba and banvel® within a 50.0–500.0 μg/ml dose-range revealed a clear increase in dicamba-induced DNA damage as an enhancement of the proportion of slightly damaged and damaged cells for all concentrations used (P < 0.01); concomitantly, a decrease of undamaged cells was found over control values (P < 0.01). In banvel®-treated cells, a similar overall result was registered. Dicamba induced a significant increase both in comet length and width over control values (P < 0.01) regardless of its concentration whereas banvel® induced the same effect only within 100.0–500.0 μg/ml dose range (P < 0.01). As detected by three highly sensitive bioassays, the present results clearly showed the capability of dicamba and banvel® to induce DNA and cellular damage on CHO cells.  相似文献   

7.
Effects of salinity and nitrate nitrogen (NO3-N) on ion accumulation and chlorophyll fluorescence were monitored for two populations of Suaeda salsa grown from seeds in a greenhouse experiment. One population inhabits the intertidal zone and the other occurs on inland saline soils. Ion contents in soils and in leaves of the two populations were also investigated in field. In the greenhouse, seedlings were exposed to a NaCl concentration of 0.6 and 35.1 ppt, with 0.1 or 5 mM NO3-N treatments for 20 days. The contents of Na+ and Cl were higher, but NO3 was lower in soils of the intertidal zone than at the inland site. In the field, ion concentrations and the estimated contribution of these ions to osmotic potential in leaves showed no difference between the two populations, except that the estimated contribution of Na+ to osmotic potential in leaves of the intertidal population was lower than that in the inland population. In the greenhouse, in contrast, the concentration of Cl was lower, but NO3 concentration and the estimated contribution of NO3 to osmotic potential were higher, in the leaves of plants from the intertidal zone. Salinity had no effect on the maximal efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII). The results indicated that S. salsa from the intertidal zone was better able to regulate Cl to a lower level, and accumulate NO3 even with low soil NO3 concentrations. Tolerance of the PSII machinery to high salinity stress may be an important characteristic for the studied species supporting growth in highly saline environments.  相似文献   

8.
One and a half year-old Ginkgo saplings were grown for 2 years in 7 litre pots with medium fertile soil at ambient air CO2 concentration and at 700 μmol mol−1 CO2 in temperature and humidity-controlled cabinets standing in the field. In the middle of the 2nd season of CO2 enrichment, CO2 exchange and transpiration in response to CO2 concentration was measured with a mini-cuvette system. In addition, the same measurements were conducted in the crown of one 60-year-old tree in the field. Number of leaves/tree was enhanced by elevated CO2 and specific leaf area decreased significantly.CO2 compensation points were reached at 75–84 μmol mol−1 CO2. Gas exchange of Ginkgo saplings reacted more intensively upon CO2 than those of the adult Ginkgo. On an average, stomatal conductance decreased by 30% as CO2 concentration increased from 30 to 1000 μmol mol−1 CO2. Water use efficiency of net photosynthesis was positively correlated with CO2 concentration levels. Saturation of net photosynthesis and lowest level of stomatal conductance was reached by the leaves of Ginkgo saplings at >1000 μmol mol−1 CO2. Acclimation of leaf net CO2 assimilation to the elevated CO2 concentration at growth occurred after 2 years of exposure. Maximum of net CO2 assimilation was 56% higher at ambient air CO2 concentration than at 700 μmol mol−1 CO2.  相似文献   

9.
A simple and sensitive high-performance liquid chromatographic method is described for the determination of paclitaxel (Taxol®) at 230 nm using a Nucleosil C18 (5 μm) column and a methanol–water (70:30, v/v) mobile phase following a single-step extraction from serum with dichloromethane. The assay was validated against the classical criteria and was applied to a toxicokinetic study in rats after one or five, one per week) intraperitoneal administrations of 16 mg/kg Taxol®.  相似文献   

10.
We investigated the effects of reducing sarcoplasmic reticular (SR) Ca2+ stores using the Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) in Langendorff-perfused mouse hearts exposed to different pro-arrhythmic agents all known to produce Ca2+-mediated arrhythmogenesis. CPA (100 and 150 nM) produced progressive (beginning over 1 min) and significant (P < 0.0001) reductions in peak amplitudes of Ca2+ transients evoked by regular stimulation in isolated Fluo-3 loaded myocytes from F/F0 = 3.2 ± 0.16 (n = 12 cells) to 1.62 ± 0.012 (n = 6 cells) and 1.53 ± 0.06 (n = 12 cells), respectively, consistent with previous reports describing reductions of store Ca2+ in other cell systems. The corresponding effects of CPA were then examined in intact hearts exposed to isoproterenol (100 nM), elevated extracellular [Ca2+] (5 mM) and caffeine (1 mM). All three agents produced ventricular tachycardia either when added alone or simultaneously with CPA during programmed electrical stimulation. However, arrhythmogenicity was not observed when such agents were added 10 min after introduction of CPA. CPA thus antagonized this Ca2+-mediated arrhythmogenesis but only under circumstances of SR Ca2+ depletion. These alterations in arrhythmogenic tendency took place despite an absence of alterations in electrogram and monophasic action potential characteristics. This was in sharp contrast to previous observations in murine, ΔKPQ-Scn5a (LQT3) and KCNE1−/− (LQT5), systems where re-entry has been implicated in arrhythmogenesis.  相似文献   

11.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

12.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

13.
Dendritic cells (DCs) are effective as antigen-presenting cells in the immune system and are present at two functional stages depending on their maturation state. For experimental investigation of this concept, CD14+ monocytes from blood are isolated and cultured to generate in vitro the DCs needed for functional analysis. For positive selection of CD14+ monocytes we compared two immunomagnetic bead technologies: MACS® Separation, created by Miltenyi Biotec, and EasySep® Selection, created by StemCell Technologies. The monocytes provided dendritic cells for their functional analysis. Lipopolysaccharide was added to cultured DCs to induce maturation. Although both systems generated DCs from the positively selected CD14+ cells, there were certain differences between them. Morphological, phenotypic, and functional analysis showed that MACS®-selection provided DCs that have typical features corresponding to day 6 or 7 of maturation. EasySep®–DCs exist in a partially-mature state from day 6 onward, even without the addition of a maturation stimulus. The reason behind this partial maturation is possibly based on the dextran-coated beads that are associated with the EasySep® product. Both methods provide pure and viable DCs, but we would recommend using the MACS® system for obtaining DCs suitable for functional studies.  相似文献   

14.
The 31P nuclear magnetic resonance (NMR) characteristics, toxicity, and cellular penetration of five linear or cyclic α-aminophosphonate highly sensitive pH probes were investigated in Dictyostelium discoideum cells and isolated rat hearts and were compared with three phosphonic acid derivatives. The line width broadening at pH pKa, which was satisfactorily modelized for all compounds, was significantly limited in biological milieu for the new markers, affording a four- to sixfold better accuracy in pH determination. Cellular uptake or washout of nontoxic concentrations (<15 mM) of α-aminophosphonates occurred by rapid passive permeation, whereas standard probes required a much slower fluid-phase pinocytosis and transport processes that could ultimately lead to trapping. Using mild concentrations (<4 mM) three α-aminophosphonates having 6 < pKa < 7 allowed an easy and simultaneous 31P NMR determination of cytosolic, acidic, and extracellular compartments in anoxic–reoxygenated or starving D. discoideum.  相似文献   

15.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

16.
Despite intensive biogeochemical research during the last thirty years, the relative importance of biological S turnover for the overall SO 4 2– budget of forested catchments remains uncertain. The objective of the present study was (i) to gain new insight into the S cycle of theLehstenbach catchment (Northeastern Bavaria, Germany) through the analysis of stable isotopes of S and (ii) to differentiate between sites which are hot spots for SO 4 2– reduction and sites where mineralization and adsorption/desorption processes are more important. The 34S values and SO 4 2– concentrations of soil solutions, throughfall and groundwater at four different sites as well as runoff of the catchment were measured. The relatively low variability of 34S in throughfall and bulk precipitation was in contrast to the high temporal and spatial variability of 34S in the soil solution. Sulfate in the soil solution of upland sites was slightly depleted in34S compared to input values. This was most likely due to S mineralization. Sulfate in the soil solution from wetland soils was clearly enriched in34S, indicating dissimilatory SO 4 2– reduction. The observed spatial and temporal patterns of34S turnover and SO 4 2– concentrations might explain the overall balanced S budget of the catchment. At a time of decreasing anthropogenic deposition SO 4 2– is currently released from upland soils. Furthermore, mineralization of organic S may contribute to SO 4 2– release. Wetland soils in the catchment represent a sink for SO 4 2– due to dissimilatory SO 4 2– reduction.  相似文献   

17.
There is increasing evidence that hydrogen peroxide (H2O2) may act as a neuromodulator in the brain, as well as contributing to neurodegeneration in diseased states, such as Parkinson's disease. The ability to monitor changes in endogenous H2O2 in vivo with high temporal resolution is essential in order to further elucidate the roles of H2O2 in the central nervous system. Here, we describe the in vitro characterization of an implantable catalase-based H2O2 biosensor. The biosensor comprises two amperometric electrodes, one with catalase immobilized on the surface and one without enzyme (blank). The analytical signal is then the difference between the two electrodes. The H2O2 sensitivity of various designs was compared, and ranged from 0 to 56 ± 4 mA cm−2 M−1. The most successful design incorporated a Nafion® layer followed by a poly-o-phenylenediamine (PPD) polymer layer. Catalase was adsorbed onto the PPD layer and then cross-linked with glutaraldehyde. The ability of the biosensors to exclude interference from ascorbic acid, and other interference species found in vivo, was also tested. A variety of the catalase-based biosensor designs described here show promise for in vivo monitoring of endogenous H2O2 in the brain.  相似文献   

18.
Biocycling of sulfur (S) has been proposed to play an important role in the recovery of ecosystems following anthropogenic S deposition. Here, we investigated the importance of the humus layer in the biocycling of S in three forested catchments in the Gårdsjön area of southwestern Sweden with differing S inputs and S isotope signature values. These experimental sites consisted of two reference catchments and the Gårdsjön roof experiment catchment (G1), where anthropogenic deposition was intercepted from 1991 until May 2002 by a roof placed over the entire catchment area. Under the roof, controlled levels of deposition were applied, using a sprinkler system, and the only form of S added was marine SO42− with a δ of +19.5‰.We installed ion exchange resin bags at the interface between the humus layer and mineral soil at each of the catchments to collect SO42− passing through the humus. The resin bags were installed on four occasions, in 1999 and 2000, covering two summer and two winter periods. The ions collected by each bag during these sampling periods were then eluted and their δ values and SO42− concentrations determined. The most striking result is that the average δ value in the resin bags was more than 12‰ lower compared to that of the sprinkler water in the G1 roof catchment. There was no increasing trend in the isotope value in the resin bag SO42− despite that the roof treatment has been on-going for almost 10 years; the average value for all resin bags was +7.1‰. The highest δ values found in the G1 roof catchment were between +11‰ and +12‰. However, these values were all obtained from resin bags installed at a single sampling location. Throughfall and resin bag δ values were more similar in the two reference catchments: about +7.5‰ in both cases. There was, however, an increase in resin bag δ values during the first winter period, from about +7‰ to +9‰. The resin bag δ value was linearly and positively related (r2 = 0.26, p < 0.001) to the amount of SO42− extracted from the resin bags, if relatively high amounts (>50 mmol m−2) were excluded. High amounts of resin bag SO42− seemed to be related to groundwater inputs, as indicated by the δ value. Our results suggest that rapid immobilization of SO42− into a large organic S pool may alter the S isotope value and affect the δ values measured in the mineral soil and runoff.  相似文献   

19.
A study was made of the effect of soil and crop type on the soil and total ecosystem respiration rates in agricultural soils in southern Finland. The main interest was to compare the soil respiration rates in peat and two different mineral soils growing barley, grass and potato. Respiration measurements were conducted during the growing season with (1) a closed-dynamic ecosystem respiration chamber, in which combined plant and soil respiration was measured and (2) a closed-dynamic soil respiration chamber which measured only the soil and root-derived respiration. A semi-empirical model including separate functions for the soil and plant respiration components was used for the total ecosystem respiration (TER), and the resulting soil respiration parameters for different soil and crop types were compared. Both methods showed that the soil respiration in the peat soil was 2–3 times as high as that in the mineral soils, varying from 0.11 to 0.36 mg (CO2) m–2 s–1 in the peat soil and from 0.02 to 0.17 mg (CO2) m–2 s–1 in the mineral soils. The difference between the soil types was mainly attributed to the soil organic C content, which in the uppermost 20 cm of the peat soil was 24 kg m–2, being about 4 times as high as that in the mineral soils. Depending on the measurement method, the soil respiration in the sandy soil was slightly higher than or similar to that in the clay soil. In each soil type, the soil respiration was highest on the grass plots. Higher soil respiration parameter values (Rs0, describing the soil respiration at a soil temperature of 10°C, and obtained by modelling) were found on the barley than on the potato plots. The difference was explained by the different cultivation history of the plots, as the potato plots had lain fallow during the preceding summer. The total ecosystem respiration followed the seasonal evolution in the leaf area and measured photosynthetic flux rates. The 2–3-fold peat soil respiration term as compared to mineral soil indicates that the cultivated peat soil ecosystem is a strong net CO2 source.  相似文献   

20.
Fate of urine nitrogen on mineral and peat soils in New Zealand   总被引:2,自引:0,他引:2  
A field lysimeter experiment was conducted over 150 days to examine the fate of synthetic urinary nitrogen (N) applied to peat and mineral soils, with and without a water table. At the start of the winter season, synthetic urine labelled with 15N, was applied at 500 kg N ha–1. Plant uptake, leaching losses and nitrous oxide (N2O) fluxes were monitored. Total plant uptake ranged from 11% to 35% of the urine-N applied depending on soil type and treatment. Plant uptake of applied N was greater in the presence of a water table in the mineral soil. Nitrate-N (NO3 --N) was only detected in leachates from the mineral soil, at concentrations up to 146 g NO3 --N mL–1. Presence of a water table in the mineral soil reduced leaching losses (as inorganic-N) from 47% to 6%, incrased plant uptake and doubled apparent denitrification losses. In the peat soils leaching losses of applied urine-N as inorganic-N were low (<5%). Losses of N as N2O were greater in the mineral soil than in the peat soils, with losses of 3% and <1% of N applied respectively after 100 days. Apparent denitrification losses far exceeded N2O losses and it is postulated that the difference could be due to dinitrogen (N2) loss and soil entrapment of N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号