共查询到20条相似文献,搜索用时 0 毫秒
1.
大港孔店油田油藏特征、流体和微生物性质分析结果表明,属于高温生态环境,地层水矿化度较低,氮、磷浓度低,而且缺乏电子受体,主要的有机物来源是油气.油田采用经过除油处理的油藏产出水回注方式开发,油层中存在的微生物类型主要是厌氧嗜热菌,包括发酵菌(102个/mL~105个/mL),产甲烷菌(103个/mL);好氧菌主要存在于注水井周围.硫酸盐还原菌(SRB)还原速率0.002 μg S2-/(L·d)~18.9 μg S2-/(L·d),产甲烷菌产甲烷速率0.012 μgCH4/(L·d)~16.2 μgCH4/(L·d).好氧菌能够氧化油形成生物质,部分氧化产物为挥发性脂肪酸和表面活性荆.产甲烷菌在油氧化菌液体培养基中产生CH4,CO2为好氧微生物和厌氧微生物的共同代谢产物.这些产物具有提高原油流动性的作用.用示踪剂研究了注入水渗流方向.通过综合分析,油藏微生物具有较大的潜力,基于激活油层茵的提高采收率方法在该油田是可行的. 相似文献
2.
大港孔店油田油藏特征、流体和微生物性质分析结果表明, 属于高温生态环境, 地层水矿化度较低, 氮、磷浓度低, 而且缺乏电子受体, 主要的有机物来源是油气。油田采用经过除油处理的油藏产出水回注方式开发, 油层中存在的微生物类型主要是厌氧嗜热菌, 包括发酵菌(102个/mL~105个/mL), 产甲烷菌(103个/mL); 好氧菌主要存在于注水井周围。硫酸盐还原菌(SRB)还原速率0.002 mg S2-/(L·d) ~18.9 mg S2-/(L·d), 产甲烷菌产甲烷速率0.012 mgCH4/(L·d)~16.2 mgCH4/(L·d)。好氧菌能够氧化油形成生物质, 部分氧化产物为挥发性脂肪酸和表面活性剂。产甲烷菌在油氧化菌液体培养基中产生CH4, CO2为好氧微生物和厌氧微生物的共同代谢产物。这些产物具有提高原油流动性的作用。用示踪剂研究了注入水渗流方向。通过综合分析, 油藏微生物具有较大的潜力, 基于激活油层菌的提高采收率方法在该油田是可行的。 相似文献
3.
Vallero MV Lettinga G Lens PN 《Journal of industrial microbiology & biotechnology》2003,30(6):375-382
A laboratory-scale upflow anaerobic sludge bed (UASB) reactor was operated during 273 days at increasing NaCl concentrations (0.5–12.5 g NaCl l–1) to assess whether the stepwise addition of the salt NaCl results in the acclimation of that sludge. The 6.5-l thermophilic (55 °C), sulfidogenic [a chemical oxygen demand (COD) to SO42– ratio of 0.5] UASB reactor operated at an organic loading rate of 5 g COD l–1 day–1, a hydraulic retention time of 10 h and was fed with methanol as the sole electron donor. The results show that the adaptation of the thermophilic, sulfidogenic methanol-degrading biomass to a high osmolarity environment is unlikely to occur. Sulfide was the main mineralization product from methanol degradation, regardless of the NaCl concentration added to the influent. However, sulfide production in the reactor steadily decreased after the addition of 7.5 g NaCl l–1, whereas acetate production was stimulated at that influent NaCl concentration. Batch tests performed with sludge harvested from the UASB reactor when operating at different influent salinities confirmed that acetate is the main metabolic product at NaCl concentrations higher than 12.5 g l–1. The apparent order of NaCl toxicity towards the different trophic groups was found to be: sulfate-reducing bacteria > methane-producing archaea > acetogenic bacteria. 相似文献
4.
Robert Klemps Heribert Cypionka Friedrich Widdel Norbert Pfennig 《Archives of microbiology》1985,143(2):203-208
Growth of Desulfotomaculum orientis, D. ruminis, D. nigrificans and the Desulfotomaculum strains TEP, TWC and TWP, that were newly isolated with sulfate and fatty acids, was studied using defined mineral media. Four of these strains grew with hydrogen plus sulfate as the only energy source. Under these conditions the growth yield of D. orientis in batch culture was 7.5 g cell dry mass per mol sulfate reduced. Growth on methanol with growth yields of about 6 g cell dry mass per mol sulfate was obtained with D. orientis and strain TEP. All strains tested grew slowly with formate as electron donor. Fatty acids from propionate to palmitate were utilized by the strains TEP, TWC and TWP. D. orientis and the strains TEP and TWC were able to utilize the methoxyl groups of trimethoxybenzoate for growth. D. orientis was found to grow chemoautotrophically with hydrogen, carbon dioxide and sulfate; during growth with C1-compounds no additional organic carbon source was required. Furthermore, D. orientis was able to grow slowly in sulfate-free medium with formate, methanol, ethanol lactate, pyruvate or trimethoxybenzoate. Under these conditions acetate was excreted, indicating the function of carbon dioxide as electron acceptor in a homoacetogenic process. A growth-promoting effect of pyrophosphate added to the medium of Desulfotomaculum species was not observed. The results show a high catabolic and anabolic versatility among Desulfotomaculum species, and indicate that electron transport to sulfate can be the sole energy conserving process in this genus. 相似文献
6.
Bernd H. G. W. van Houten Wim van Doesburg Henk Dijkman Cris Copini Hauke Smidt Alfons J. M. Stams 《Applied microbiology and biotechnology》2009,84(3):555-563
The performance of a full-scale (500 m3) sulfidogenic synthesis gas fed gas-lift reactor treating metal- and sulfate-rich wastewater was investigated over a period
of 128 weeks. After startup, the reactor had a high methanogenic activity of 46 Nm3·h−1. Lowering the carbon dioxide feed rate during the first 6 weeks gradually lowered the methane production rate. Between weeks
8 and 93, less than 1% of the hydrogen supplied was used for methanogenesis. Denaturing gradient gel electrophoresis analysis
of polymerase chain reaction-amplified 16S rRNA gene fragments showed that the archaeal community decreased in diversity but
did not disappear completely. After the carbon dioxide feed rate increased in week 88, the methane production rate also increased,
confirming that methane production was carbon dioxide limited. Even though lowering the carbon dioxide feed appeared to affect
part of the sulfate-reducing community, it did not prevent achieving the desired rates of sulfate reduction. The average sulfate
conversion rate was 181 kg∙h−1 for the first 92 weeks. After 92 weeks, the sulfate input rate was increased and from week 94 to 128, the average weekly
sulfate conversion rate was 295 kg·h−1 (SD ± 87). Even higher sulfate conversion rates of up to 400 kg·h−1 could be sustained for weeks 120–128. The long-term performance and stability together with the ability to control methanogenesis
demonstrates that synthesis gas fed reactor can be used successfully at full scale to treat metal and sulfate-rich wastewater. 相似文献
7.
Dianne K. Newman Erin K. Kennedy John D. Coates Dianne Ahmann Debra J. Ellis Derek R. Lovley François M. M. Morel 《Archives of microbiology》1997,168(5):380-388
A newly discovered arsenate-reducing bacterium, strain OREX-4, differed significantly from strains MIT-13 and SES-3, the previously described arsenate-reducing isolates, which grew on nitrate but not on sulfate. In contrast, strain OREX-4 did not respire nitrate but grew on lactate, with either arsenate or sulfate serving as the electron acceptor, and even preferred arsenate. Both arsenate and sulfate reduction were inhibited by molybdate. Strain OREX-4, a gram-positive bacterium with a hexagonal S-layer on its cell wall, metabolized compounds commonly used by sulfate reducers. Scorodite (FeAsO42· H2O) an arsenate-containing mineral, provided micromolar concentrations of arsenate that supported cell growth. Physiologically and phylogenetically, strain OREX-4 was far-removed from strains MIT-13 and SES-3: strain OREX-4 grew on different electron donors and electron acceptors, and fell within the gram-positive group of the Bacteria, whereas MIT-13 and SES-3 fell together in the ɛ-subdivision of the Proteobacteria. Together, these results suggest that organisms spread among diverse bacterial phyla can use arsenate as a terminal electron acceptor, and that dissimilatory arsenate reduction might occur in the sulfidogenic zone at arsenate concentrations of environmental interest. 16S rRNA sequence analysis indicated that strain OREX-4 is a new species of the genus Desulfotomaculum, and accordingly, the name Desulfotomaculum auripigmentum is proposed. Received: 22 October 1997 / Accepted: 16 June 1997 相似文献
8.
9.
Bacterial sulfur reduction in hot vents 总被引:1,自引:0,他引:1
E.A. Bonch-Osmolovskaya 《FEMS microbiology reviews》1994,15(1):65-77
Abstract: Elemental sulfur can be reduced through different microbial processes, including catabolically significant sulfur respiration and reduction of sulfur in the course of fermentation. Both of these processes are found in thermophilic microorganisms inhabiting continental and submarine hot vents, where elemental sulfur is one of the most common sulfur species. Among extreme thermophiles, respresented mainly by Archaea, sulfur-respiring bacteria include hydrogen-utilizing lithoautotrophs and heterotrophs, oxidizing complex organic substrates. Some marine heterotrophic sulfur-reducing Archaea were found to ferment peptides and polysaccharides, using elemental sulfur as an electron sink and thus avoiding the formation of molecular hydrogen which is highly inhibiting. Moderately thermophilic communities contain eubacterial sulfur reducers capable of lithotrophic and heterotrophic growth. Total mineralization of organic matter is carried out by a complex microbial system consisting of fermentative heterotrophs, which use elemental sulfur as an electron sink, and sulfur-respiring bacteria of the genus Desulfurella , which oxidize other fermentation products, yielding only COf2 and Hf2 S. The most remarkable thermophilic microbial community is the thermophilic cyanobacterial mat found in the Uzon caldera, Kamchatka, which contains elemental sulfur among the layers. Organic matter produced by the thermophilic Oscillatoria is completely and rapidly mineralized by means of sulfur reduction. 相似文献
10.
11.
Joan Mir Maira Martínez-Alonso Pierre Caumette Ricardo Guerrero Isabel Esteve 《International microbiology》2002,5(3):133-138
The sulfur cycle of Ebro Delta microbial mats was studied in order to determine sulfide production and sulfide consumption.
Vertical distribution of two major functional groups involved in the sulfur cycle, anoxygenic phototrophic bacteria and dissimilatory
sulfate-reducing bacteria (SRB), was also studied. The former reached up to 2.2×108 cfu cm–3 sediment in the purple layer, and the latter reached about 1.8×105 SRB cm–3 sediment in the black layer. From the changes in sulfide concentrations under light-dark cycles it can be inferred that the
rate of H2S production was 6.2 μmol H2S cm–3 day–1 at 2.6 mm, and 7.6 μmol H2S cm–3 day–1 at 6 mm. Furthermore, sulfide consumption was also assessed, determining rates of 0.04, 0.13 and 0.005 mmol l–1 of sulfide oxidized at depths of 2.6, 3 and 6 mm, respectively.
Electronic Publication 相似文献
12.
Sulfate reduction in methanogenic bioreactors 总被引:9,自引:0,他引:9
Stefanie J.W.H. Oude Elferink ré Visser Look W. Hulshoff Pol Alfons J.M. Stams 《FEMS microbiology reviews》1994,15(2-3):119-136
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate. 相似文献
13.
Cervantes FJ Gutiérrez CH López KY Estrada-Alvarado MI Meza-Escalante ER Texier AC Cuervo F Gómez J 《Biodegradation》2008,19(2):235-246
The capacity of two anaerobic consortia to oxidize different organic compounds, including acetate, propionate, lactate, phenol and p-cresol, in the presence of nitrate, sulfate and the humic model compound, anthraquinone-2,6-disulfonate (AQDS) as terminal electron acceptors, was evaluated. Denitrification showed the highest respiratory rates in both consortia studied and occurred exclusively during the first hours of incubation for most organic substrates degraded. Reduction of AQDS and sulfate generally started after complete denitrification, or even occurred at the same time during the biodegradation of p-cresol, in anaerobic sludge incubations; whereas methanogenesis did not significantly occur during the reduction of nitrate, sulfate, and AQDS. AQDS reduction was the preferred respiratory pathway over sulfate reduction and methanogenesis during the anaerobic oxidation of most organic substrates by the anaerobic sludge studied. In contrast, sulfate reduction out-competed AQDS reduction during incubations performed with anaerobic wetland sediment, which did not achieve any methanogenic activity. Propionate was a poor electron donor to achieve AQDS reduction; however, denitrifying and sulfate-reducing activities carried out by both consortia promoted the reduction of AQDS via acetate accumulated from propionate oxidation. Our results suggest that microbial reduction of humic substances (HS) may play an important role during the anaerobic oxidation of organic pollutants in anaerobic environments despite the presence of alternative electron acceptors, such as sulfate and nitrate. Methane inhibition, imposed by the inclusion of AQDS as terminal electron acceptor, suggests that microbial reduction of HS may also have important implications on the global climate preservation, considering the green-house effects of methane. 相似文献
14.
Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA) 总被引:2,自引:3,他引:2
Carla M. Koretsky Charles M. Moore Kristine L. Lowe Christof Meile Thomas J. DiChristina Philippe Van Cappellen 《Biogeochemistry》2003,64(2):179-203
Seasonal variations in anaerobic respiration pathways were investigated at three saltmarsh sites using chemical data, sulfate reduction rate measurements, enumerations of culturable populations of anaerobic iron-reducing bacteria (FeRB), and quantification of in situ 16S rRNA hybridization signals targeted for sulfate-reducing bacteria (SRB). Bacterial sulfate reduction in the sediments followed seasonal changes in temperature and primary production of the saltmarsh, with activity levels lowest in winter and highest in summer. In contrast, a dramatic decrease in the FeRB population size was observed during summer at all sites. The collapse of FeRB populations during summer was ascribed to high rates of sulfide production by SRB, resulting in abiotic reduction of bioavailable Fe(III) (hydr)oxides. To test this hypothesis, sediment slurry incubations at 10, 20 and 30 °C were carried out. Increases in temperature and labile organic carbon availability (acetate or lactate additions) increased rates of sulfate reduction while decreasing the abundance of culturable anaerobic FeRB. These trends were not reversed by the addition of amorphous Fe(III) (hydr)oxides to the slurries. However, when sulfate reduction was inhibited by molybdate, no decline in FeRB growth was observed with increasing temperature. Addition of dissolved sulfide adversely impacted propagation of FeRB whether molybdate was added or not. Both field and laboratory data therefore support a sulfide-mediated limitation of microbial iron respiration by SRB. When total sediment respiration rates reach their highest levels during summer, SRB force a decline in the FeRB populations. As sulfate reduction activity slows down after the summer, the FeRB are able to recover. 相似文献
15.
Methanogenesis from acetate by a rod-shaped enrichment culture grown at 60° C was found to require the presence of two organisms rather than a single aceticlastic methanogen. A thermophilic Methanobacterium which grew on H2/CO2 or formate was isolated from the enrichment. Lawns of this methanogen were used to co-isolate an acetate oxidizer in roll tubes containing acetate agar. The rod-shaped acetate oxidizer was morphologically distinct from the methanogen and did not show F420 autofluorescence. The coculture completely degraded 40 mol/ml acetate, and produced nearly equal quantities of methane, and methanogenesis was coupled with growth. The doubling time for the coculture at 60°C was 30–40 h and the yield was 2.7±0.3 g dry wt/mol CH4. Studies with 14C-labelled substrates showed that the methyl group and the carboxyl group of acetate were both converted primarily to CO2 by the coculture and that CO2 was concurrently reduced to CH4. During growth, there was significant isotopic exchange between CO2 and acetate, especially with thecarboxyl position of acetate. These results support a mechanism for methanogenesis from acetate by the coculture in which acetate was oxidized to CO2 and H2 by one organism, while H2 was subsequently used by a second organism to reduce CO2 to CH4. Since the H2 partial pressure must be maintained below 10-4 atm by the methanogen for acetate oxidation to be thermodynamically feasible, this is an example of obligate interspecies hydrogen transfer. This mechanism was originally proposed for a single organism by Barker in 1936. 相似文献
16.
《Systematic and applied microbiology》2020,43(5):126105
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. 相似文献
17.
18.
D. Fortin B. Davis G. Southam T. J. Beveridge 《Journal of industrial microbiology & biotechnology》1995,14(2):178-185
Summary Mill tailings resulting from mining and metallurgical processes are usually disposed of into open-air impoundments, where they become subjected to chemical or microbial leaching. At the surface of the tailings, where oxic conditions prevail, acidophilic bacteria, such as thiobacilli, can oxidize sulfidic minerals (e.g. pyrite and pyrrhotite) and generate acidic metal-rich leachates as by-products of their metabolism. This, combined with chemical oxidation, leads to acid mine drainage (AMD). Biomineralization, whereby a proportion of the metal leachate is precipitated, can also occur in the oxidized tailings, often as a result of a close metal-bacteria interaction. Iron-rich precipitates are usually found on bacterial cell walls, and are thought to serve as nucleation sites for further mineralization within the tailings impoundments. As depth increases in mine tailings, oxygen depletion and the presence of water-saturated pores usually lead to anoxic conditions. Under such redox and chemical conditions, populations of sulfate-reducing bacteria (SRBs) can colonize the tailings. As a result of their metabolic activity, sulfate is reduced to hydrogen sulfide, which in turn can react with dissolved metals to form metal sulfide precipitates. Microbial sulfate reduction also generates alkalinity, although chemical dissolution of carbonate and oxide minerals probably also play an important role in the generation of alkaline conditions in mine tailings. 相似文献
19.
From anaerobic digestor sludge of a waste water treatment plant, a gram-negative, strictly anaerobic sulfate-reducing bacterium was isolated with acetone as sole organic substrate. The bacterium was characterized as a new species, Desulfococcus biacutus. The strain grew with acetone with doubling times of 72 h to 120 h; the growth yield was 12.0 (±2.1) g · [mol acetone]-1. Acetone was oxidized completely, and no isopropanol was formed. In labelling studies with 14CO2, cell lipids (including approx. 50% PHB) of acetone-grown cells became labelled 7 times as high as those of 3-hydroxy-buyrate-grown cells. Enzyme studies indicated that acetone was degraded via acetoacetyl-CoA, and that acetone was channeled into the intermediary metabolism after condensation with carbon dioxide to a C4-compound, possibly free acetoacetate. Acetoacetyl-CoA is cleaved by a thiolase reaction to acetyl-CoA which is completely oxidized through the carbon monoxide dehydrogenase pathway. Strain KMRActS was deposited with the Deutsche Sammlung von Mikroorganismen, Braunschweig, under the number DSM 5651. 相似文献
20.
Growth, incidence and activities of dissimilatory sulfate-reducing bacteria in the human oral cavity 总被引:2,自引:0,他引:2
Caroline L. Willis Glenn R. Gibson Clive Allison Sandra Macfarlane Jon S. Holt 《FEMS microbiology letters》1995,129(2-3):267-271
Abstract Viable counts and activities of sulfate-reducing bacteria were determined in the oral cavities of 12 healthy volunteers. Of these, 10 harboured viable sulfate-reducing bacteria populations. Six separate sites were sampled: the posterior tongue, anterior tongue, mid buccal mucosa, vestibular mucosa, supragingival plaque and subgingival plaque. Sulfate-reducing bacteria occurred in all areas, with the highest incidence in supragingival plaque. Viable counts and sulfate-reducing activities in each of the regions varied from 0 to 108 cfu (g wet weight)−1 and from 0 to 50 nmol (g wet weight) −1 h−1 , respectively. As sulfate-reducing bacteria can be detected in the oral cavity, they may potentially be involved in terminal oxidative processes carried out by the microflora of the mouth. 相似文献