首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of millimeter wave irradiation on tumor metastasis   总被引:5,自引:0,他引:5  
One of the major side effects of chemotherapy in cancer treatment is that it can enhance tumor metastasis due to suppression of natural killer (NK) cell activity. The present study was undertaken to examine whether millimeter electromagnetic waves (MMWs) irradiation (42.2 GHz) can inhibit tumor metastasis enhanced by cyclophosphamide (CPA), an anticancer drug. MMWs were produced with a Russian-made YAV-1 generator. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm(2), respectively. Tumor metastasis was evaluated in C57BL/6 mice, an experimental murine model commonly used for metastatic melanoma. The animals were divided into 5 groups, 10 animals per group. The first group was not given any treatment. The second group was irradiated on the nasal area with MMWs for 30 min. The third group served as a sham control for group 2. The fourth group was given CPA (150 mg/kg body weight, ip) before irradiation. The fifth group served as a sham control for group 4. On day 2, all animals were injected, through a tail vein, with B16F10 melanoma cells, a tumor cell line syngeneic to C57BL/6 mice. Tumor colonies in lungs were counted 2 weeks following inoculation. CPA caused a marked enhancement in tumor metastases (fivefold), which was significantly reduced when CPA-treated animals were irradiated with MMWs. Millimeter waves also increased NK cell activity suppressed by CPA, suggesting that a reduction in tumor metastasis by MMWs is mediated through activation of NK cells.  相似文献   

2.
3.
It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.  相似文献   

4.

Introduction

Inflammation of the synovial membrane plays an important role in the pathophysiology of osteoarthritis (OA). The synovial tissue of patients with initial OA is characterized by infiltration of mononuclear cells and production of proinflammatory cytokines and other mediators of joint injury. The objective was to evaluate the effect of low-level laser therapy (LLLT) operating at 50 mW and 100 mW on joint inflammation in rats induced by papain, through histopathological analysis, differential counts of inflammatory cells (macrophages and neutrophils), as well as gene expression of interleukin 1-beta and 6 (IL-1β and IL-6), and protein expression of tumor necrosis factor alpha (TNFα).

Methods

Male Wistar rats (n = 60) were randomly divided into four groups of 15 animals, namely: a negative control group; an inflammation injury positive control group; a 50 mW LLLT group, subjected to injury and treated with 50 mW LLLT; and a 100 mW LLLT group, subjected to injury and treated with 100 mW LLLT. The animals were subject to joint inflammation (papain solution, 4%) and then treated with LLLT (808 nm, 4 J, 142.4 J/cm2, spot size 0.028 for both groups). On the day of euthanasia, articular lavage was collected and immediately centrifuged; the supernatant was saved for analysis of expression of TNFα protein by enzyme-linked immunosorbent assay and expression of IL-1β and IL-6 mRNA by real-time polymerase chain reaction. A histologic examination of joint tissue was also performed. For the statistical analysis, analysis of variance with Tukey''s post-hoc test was used for comparisons between each group. All data are expressed as mean values and standard deviation, with P < 0.05.

Results

Laser treatment with 50 mW was more efficient than 100 mW in reducing cellular inflammation, and decreased the expression of IL-1β and IL-6. However, the 100 mW treatment led to a higher reduction of TNFα compared with the 50 mW treatment.

Conclusions

LLLT with 50 mW was more efficient in modulating inflammatory mediators (IL-1β, IL-6) and inflammatory cells (macrophages and neutrophils), which correlated with the histology that showed a reduction in the inflammatory process.  相似文献   

5.
Acute exposure to hamsters to microwave energy (2.45 GHz; 25 mW/cm2 for 60 min) resulted in activation of peritoneal macrophages that were significantly more viricidal to vaccinia virus as compared to sham-exposed or normal (minimum-handling) controls. Macrophages from microwave-exposed hamsters became activated as early as 6 h after exposure and remained activated for up to 12 days. The activation of macrophages by microwave exposure paralleled the macrophage activation after vaccinia virus immunization. Activated macrophages from vaccinia-immunized hamsters did not differ in their viricidal activity when the hamsters were microwave- or sham-exposed. Exposure for 60 min at 15 mW/cm2 did not activate the macrophages while 40 mW/cm2 exposure was harmful to some hamsters. Average maximum core temperatures in the exposed (25 mW/cm2) and sham groups were 40.5 degrees C (+/- 0.35 SD) and 38.4 degrees C (+/- 0.5 SD), respectively. In vitro heating of macrophages to 40.5 degrees C was not as effective as in vivo microwave exposure in activating macrophages to the viricidal state. Macrophages from normal, sham-exposed, and microwave-exposed hamsters were not morphologically different, and they all phagocytosed India ink particles. Moreover, immune macrophage cytotoxicity for virus-infected or noninfected target cells was not suppressed in the microwave-irradiated group (25 mW/cm2, 1 h) as compared to sham-exposed controls, indicating that peritoneal macrophages were not functionally suppressed or injured by microwave hyperthermia.  相似文献   

6.
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.  相似文献   

7.
In one experiment, Sprague Dawley rats (16–21 days of gestation) and their offspring were exposed to 100-MHz (CW) electromagnetic radiation at 46 mW/cm2 (SAR 2.77 mW/g) for 4 h/day for 97 days. In another experiment, the pregnant rats were irradiated daily from 17 to 21 days of gestation with 2450-MHz (CW) microwaves at 10 mW/cm2 (SAR 2 mW/g) for 21 h/day. In a third experiment, 6-day-old rat pups were irradiated 7 h/day for five days with 2450-MHz radiation at 10 mW/cm2. Equal numbers of animals were sham irradiated in each group. Quantitative studies of Purkinje cells showed a significant and irreversible decrease in rats irradiated during fetal or fetal and early postnatal life. In animals exposed postnatally, and euthanized immediately after irradiation, significant decrease in the relative number of Purkinje cells was apparent. However, restoration apparently occurred after forty days of recovery.  相似文献   

8.
Tests of mutagenesis and reproduction were conducted in male rats which were irradiated by 2,450-MHz, continuous-wave (CW) microwaves, 4 hr/day from day 6 of gestation to 90 days of age at 5 mW/cm2; or 5 hr/day for five days beginning on the 90th day of age at 10 mW/cm2; or 4 hr/day, 5 days/ wk for four weeks, beginning on the 90th day of age. During selected weekly periods after treatment, the rats were bred to pairs of untreated, normal female rats that were examined in late pregnancy by means of the dominant lethal assay. The reproductive efficiency of these males, as reflected in their breeding, was also examined for changes relating to their microwave experience. No significant evidence of germ-cell mutagenesis was detected when data of microwave-exposed males were compared with those of sham-exposed males, even though there were significant increases in rectal and intra-testicular temperatures at a power density of 28 mW/cm2. Temporary sterility, as indexed by fewer pregnancies, was seen at the highest power density.  相似文献   

9.
The effect of low-intensity laser light (He-Ne, 0.2 mW/cm2, 632.8 nm, exposure time 1 min) or centimeter waves (8.15–18 GHz, 1 μW/cm2, exposure time 1 h) on Phospho-SAPK/JNK production in mice lymphocytes was investigated. Normal isolated spleen lymphocytes or cells incubated previously with geldanamycin, an inhibitor of Hsp90, were used in the experiments. Significant stimulation of Phospho-SAPK/JNK production in lymphocytes after treatment with laser light or microwaves has been shown in both cell models. It was proposed that activation of the SAPK/JNK signal pathway plays one of the central roles in cellular stress response to low-power nonionizing radiation.  相似文献   

10.
Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.  相似文献   

11.
Confounding factors influencing the sensitivity of biological indicators of microwave exposure--lethality, colonic temperature (Tco), decreased body mass (dW), corticosterone (CS), thyrotropin (TSH), thyroxine (T4), free thyroxine (FT4), and prolactin (PRL) concentration--were studied in Long-Evans (LE), Wistar-Kyoto (WKY), and spontaneous hypertensive (SHR) rats. The microwave signal was 2.45 GHz amplitude modulated at 120 Hz. Test power density ranged from 1 to 50 mW/cm2 for 2 h. In contrast to the LE and WKY rats, the SHR rats were characterized by intolerance (death) between 40 and 50 mW/cm2 (9.2 to 11.5 W/kg). The lowest lethal Tco was 41.1 degrees C. Survivors including all the LE and WKY rats were capable of maintaining Tco lower than 41.0 degrees C. In general, strain of rat seemed to influence other bioindicators and to interact with power density on these bioindicators. Except for Tco and PRL, baseline for the various bioindicators varied among the different strains of rats. Responses of T4 and FT4 were limited in magnitude and inconsistent among strains of rats. In general, the magnitude of Tco increase was more pronounced in SHR than in WKY. Differences between SHR and LE, however, could be noted only at 1, 10, and 50 mW/cm2. Increased Tco, increased magnitude of Dw, increased CS, decreased TSH, and increased PRL (stress reactions) could be noted in rats exposed to 30 mW/cm2 (approximately 6 W/kg) or higher, irrespective of strain. At least two of three strains of rats (WKY and SHR) exposed to 20 mW/cm2 (approximately 4 W/kg) showed changes in Tco, CS, TSH, and PRL. At 10 mW/cm2 (2 W/kg), increased Tco could be found in all three strains of rats accompanied by changes in dW and TSH in LE, TSH in WKY, and dW and CS in SHR. At 1 mW/cm2 (0.2 W/kg), increased Tco could be noted in two of three strains (LE and SHR) and increased PRL in LE only. The smallest Tco increases for a consistent response (increased magnitude of response with power density) were 1.59 degrees C for dW, 0.70 degrees C for CS, 0.24 degrees C for TSH, and 0.97 degrees C for PRL. Tentatively, the threshold intensity for response to microwave exposure for rats could be considered as 2 W/kg or a 0.24 degrees C increase at 24 degrees C ambient temperature.  相似文献   

12.
Photodynamic therapy of cancer is a promising treatment based on the tumor-specific accumulation of photosensitizers followed by irradiation with visible light which induces tumor cell death. The effect of different preincubation times on the photosensitization efficiency of the phthalocyanines AlPc and AlPcS4 was investigated in lymphoblastoid CCRF-CEM cells under conditions that allow maximal uptake of the sensitizers. First, the time course for the uptake of AlPcS4 and AlPc by CCRF-CEM cells and by the pheochromocytoma PC12 cells was compared. The uptake of AlPcS4 by CCRF-CEM cells was not significantly different after 6 h or 24 h incubation, but the photosensitization efficiency of the phthalocyanine was much higher when a 24 h preincubation period was used, with a fluence rate of 5 mW/cm2. However, for a fluence rate of 10 mW/cm2, the photosensitization efficiency of AlPcS4 was almost completely independent of the preincubation time (6 h vs. 24 h) with the phthalocyanine. When the cells were preincubated with 1 mol/L AlPc for 10 min or 6 h, which allows the same accumulation of sensitizer by the cells, no significant effect of the incubation time on the photodynamic inactivation of CCRF-CEM cells was observed, with fluence rates of 5 mW/cm2 or 10 mW/cm2, for different light doses. Confocal fluorescence microscopy studies did not reveal differences in the localization of the phthalocyanines after maximal uptake was reached. The results show that the preincubation time with AlPcS4, after the maximal uptake is reached, affects cell growth to an extent depending on the fluence rate used, and this effect was not due to a major redistribution of the sensitizer during incubation. However, this was not observed when AlPc was used.  相似文献   

13.

Background

The role of Vitamin D in musculoskeletal functionality among elderly people is still controversial. We investigated the association between serum 25-hydroxyvitamin D (25OHD) levels and physical performance in older adults.

Methods

2694 community-dwelling elderly women and men from the Progetto Veneto Anziani (Pro.V.A.) were included. Physical performances were assessed by: tandem test, 5 timed chair stands (TCS), gait speed, 6-minute walking (6 mW) distance, handgrip strength, and quadriceps strength. For each test, separate general linear models and loess plots were obtained in both genders, in relation to serum 25OHD concentrations, controlling for several potential confounders.

Results

Linear associations with 25OHD levels were observed for TCS, gait speed, 6 mW test and handgrip strength, but not for tandem test and quadriceps strength. After adjusting for potential confounders, linear associations with 25OHD levels were still evident for the 6 mW distance in both genders (p = .0002 in women; <.0001 in men), for TCS in women (p = .004) and for gait speed (p = .0006) and handgrip strength (p = .03) in men. In loess analyses, performance in TCS in women, in gait speed and handgrip strength in men and in 6 mW in both genders, improved with increasing levels of 25OHD, with most of the improvements occurring for 25OHD levels from 20 to 100 nmol/L.

Conclusion

lower 25OHD levels are associated with a worse coordination and weaker strength (TCS) in women, a slower walking time and a lower upper limb strength in men, and a weaker aerobic capacity (6 mW) in both genders. For optimal physical performances, 25OHD concentrations of 100 nmol/L appear to be more advantageous in elderly men and women, and Vitamin D supplementation should be encouraged to maintain their 25OHD levels as high as this threshold.  相似文献   

14.
This study was designed to examine ocular effects associated with exposure to millimeter waves (60 GHz). Rabbits served as the primary experimental subjects. To confirm the results of the rabbit experiments in a higher species, the second phase of the study used nonhuman primates (Macaca mulatta). First, this study used time-resolved infrared radiometry to assess the field distribution patterns produced by different antennas operating at 60 GHz. These results allowed us to select an antenna that produced a uniform energy distribution and the best distance at which to expose our experimental subjects. The study then examined ocular changes after exposure at an incident power density of 10 mW/cm(2). Acute exposure of both rabbits and nonhuman primates consisted of a single 8 h exposure, and the repeated exposure protocol consisted of five separate 4 h exposures on consecutive days. One eye in each animal was exposed and the contralateral eye served as the sham-exposed control. After postexposure diagnostic examinations, animals were euthanized and the eyes were removed. Ocular tissue was examined by both light and transmission electron microscopy. Neither microscopic examinations nor the diagnostic procedures performed on the eyes of acute and repeatedly exposed rabbits found any ocular changes that could be attributed to millimeter-wave exposure at 10 mW/cm(2). Examination of the primates after comparable exposures also failed to detect any ocular changes due to exposure. On the basis of our results, we conclude that single or repeated exposure to 60 GHz CW radiation at 10 mW/cm(2) does not result in any detectable ocular damage.  相似文献   

15.
Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.  相似文献   

16.
Mice were exposed in the far field in an anechoic chamber to 2,880-MHz pulsed microwaves 3 to 7.5 h daily, 5 days/week for 60 to 360 h. Three experiments were performed at average power densities of 5 mW/cm2 and six at 10 mW/cm2, corresponding to averaged specific absorption rates (SARs) of 2.25 and 4.50 mW/g, respectively. Each experiment consisted of eight mice, with a concurrently sham-exposed group of eight. In two of three studies at 5 mW/cm2, there was a significant increase in bone marrow cellularity in the microwave-exposed groups compared to the sham-exposed groups. Significant differences were occasionally seen in erythrocyte, leukocyte, and platelet values from microwave-exposed groups, but were not consistently observed. In one of six groups exposed at 10 mW/cm2, mean bone marrow cellularity was reduced significantly in the microwave-exposed mice; in another group, the lymphocyte count was increased. In only one exposure (10 mW/cm2 for 360 h) was any significant effect noted on serum proteins: a reduction to 5.1 +/- 0.3 g/dl in the exposed versus 5.6 +/- 0.4 g/dl in the sham-exposed mice. This was due to a decrease in alpha and beta globulins, with no effect on albumin or gamma globulin concentrations. No effect on bone marrow granulocyte/macrophage colony-forming units (CFU) was revealed following exposure of mice to pulsed microwaves at 5 mW/cm2. In one of four exposures at 10 mW/cm2, there was a significant increase in CFU-agar colonies. No significant effects of exposures at 10 mW/cm2 were observed on in vivo and in vitro assays of cell-mediated immune functions. No exposure-related histopathologic lesions were found from examination of several tissues and organs. Results of these series of exposures of mice at SARs of 2.25 and 4.50 mW/g indicated no consistent effects on the hematologic, immunologic, or histopathologic variables examined.  相似文献   

17.
There are three or four ovarian follicular waves in the interovulatory interval of cyclic ewes. Each follicular wave is preceded by a transient peak in serum follicle-stimulating hormone (FSH) concentrations. Serum concentrations of estradiol also increase concurrent with the growth of follicle(s) in each wave. In the current study, we investigated the patterns of follicular wave development and characteristics of FSH and estradiol peaks in all follicular waves of the interovulatory interval and after induction of a supraphysiologic FSH peak in cyclic ewes (Ovis aris). In Experiment 1, 19 ewes underwent daily ovarian ultrasonography and blood sampling for a complete interovulatory interval. In Experiment 2, seven ewes received two administrations of ovine FSH (oFSH), 8 h apart (1 μg/kg; sc), at the expected time of the endogenous FSH peak preceding the second follicular wave of the interovulatory interval. In Experiment 1, the amplitude of the FSH peaks decreased (up to 50%), whereas basal serum FSH concentrations increased across the interovulatory interval (P < 0.05). Maximum follicular diameter was greater (P < 0.05) for Wave 1 and the Ovulatory wave (6.0 ± 0.3 and 6.1 ± 0.2 mm, respectively) than for Waves 2 and 3 (5.3 ± 0.1 and 5.4 ± 0.3 mm, respectively). Life span was greater for follicles in Wave 1 compared with other waves (P < 0.05). Treatment with oFSH increased the amplitude of an FSH peak by 5- to 6-fold. This treatment increased estradiol production (P < 0.05) but had little effect on other characteristics of the subsequent follicular wave. We concluded that changes in the amplitude and duration of the peaks in serum concentrations of FSH that precede follicular waves across the interovulatory interval do not influence the characteristics of the follicular waves that follow.  相似文献   

18.
C3H/HeA mice with high incidence of spontaneous breast cancer and Balb/c mice treated with 3,4-benzopyrene (BP) (by painting of the skin resulting in the development of skin cancer) were irradiated with 2,450-MHz microwaves (MW) in an anechoic chamber at 5 or 15 mW/cm2 (2 h daily, 6 sessions per week). C3H/HeA mice were irradiated from the 6th week of life, up to the 12th month of life. Balb/c mice treated with BP were irradiated either prior to (over 1 or 3 months) or simultaneously with BP treatment (over 5 months). The appearance of palpable tumors in C3H/HeA mice and of skin cancer in BP-treated Balb/c mice was checked every 2 weeks for 12 months. Two additional groups of mice were exposed to chronic stress caused by confinement or to sham-irradiation in an anechoic chamber; these served as controls. Irradiation with MWs at either 5 or 15 mW/cm2 for 3 months resulted in a significant lowering of natural antineoplastic resistance (mean number of lung neoplastic colonies was 2.8 ± 1.6 (SD) in controls, 6.1 ± 1.8 in mice exposed at 5 mW/cm2 and 10.8 ± 2.1 in those irradiated at 15 mW/cm2) and acceleration of development of BP-induced skin cancer (285 days in controls, 230 days for 5 mW/cm2 and 160 days for 15 mW/cm2). Microwave-exposed C3H/HeA mice developed breast tumors earlier than controls (322 days in controls, 261 days for 5 mW/cm2 and 219 days for 15 mW/cm2). A similar acceleration was observed in the development of BP-induced skin cancer in mice exposed simultaneously to BP and MWs (285 days in controls, 220 day for 5 mW/cm2 and 121 days for 15 mW/cm2). The acceleration of cancer development in all tested systems and lowering of natural antineoplastic resistance was similar in mice exposed to MW at 5 mW/cm2 or to chronic stress caused by confinement but differed significantly from the data obtained on animals exposed at 15 mW/cm2, where local thermal effects (“hot” spots) were possible.  相似文献   

19.
The goal of this study was to record the hormonal and follicular turnover in Jersey crossbred cows when subjected for follicular wave synchronization using GnRH. Six healthy, non-lactating and regularly cycling Jersey crossbred cows (5-6 y) were used for the study. In the control group, the follicular wave pattern was ultrasonographically investigated in 18 cycles (3 cycles/cow). In the treatment group, GnRH analogue (buserelin acetate 10 μg im) was administered on Day 6 of the cycle and follicular wave pattern was studied in 12 cycles (2 cycles/animal). Follicular population was categorized based on their diameter Class I, ≤5 mm; Class II, >5-<9 mm; Class III, ≥9 mm) and the number of follicles in each category was determined on Day 6, Day 8 and Day 10. Plasma FSH and progesterone concentrations were estimated in both control and treatment groups. Out of 18 estrous cycles studied, 14 cycles (77.8%), three cycles (16.7%) and one cycle (5.6%) exhibited three-, two- and four-follicular waves per cycle, respectively. It was evident that the DF of Wave I established its dominance and was in the growing phase by Day 6 of the estrous cycle in all the normally cycling crossbred cows. The DF ovulated in all the animals (100%) in the mean interval of 27.7 ± 0.2 h after GnRH administration. A synchronized homogenous group of follicles emerged two days after GnRH injection (Day of 8.0 ± 0.0) in all the animals (100%). The combination of LH surge induced ovulation of DF (abrupt termination of Wave I) and FSH surge stimulated homogenous recruitment of Class I follicles, led to a synchronized emergence of follicular wave. All the GnRH treated cows had three follicular waves because of early emergence and short period of dominance of Wave II DF.  相似文献   

20.
【目的】探明高强度和低强度紫外辐射不同持续时间处理对麦长管蚜Sitobion avenae (Fabricius)生长发育和繁殖的影响, 以及强度与持续时间之间的交互作用。【方法】不同强度(0.20 mW/cm2, 0.75 mW/cm2)、不同持续时间(3 h, 9 h和15 h)的UV-B处理后, 采用编制特定年龄生命表和测量麦长管蚜体重方法, 统计相对日均体重增长率(mean relative growth rate, MRGR)、生命表种群参数、繁殖参数以及存活率和繁殖率的变化。【结果】生命表数据表明, 在同一辐射持续时间下, 麦长管蚜种群内禀增长率rm、净增殖率R0、繁殖力F随紫外强度增加而显著(P<0.05)下降, 短时间内死亡率升高, 繁殖率降低; 在同一紫外强度下, 麦长管蚜的rm, R0和F也随处理时间延长而显著降低, 存活率下降最快时期提前, 繁殖率降低; 紫外强度和持续时间两因素的影响具有极显著(P<0.01)的交互作用, 但在短时间(3 h)、低强度(0.20 mW/cm2)的处理中, 麦蚜的rm, R0和F却高于无紫外辐射组(对照)。MRGR数据表明, 高强度(0.75 mW/cm2)、长时间(15 h)紫外辐射处理下麦长管蚜MRGR显著降低, 但低强度、相对短时间(3 h和9 h)紫外辐射处理下的MRGR间均无显著性差异。随辐射强度和持续时间增加, 发育为成蚜时有翅蚜所占比例增大。【结论】麦长管蚜的生长发育和繁殖受到紫外UV-B胁迫的影响, 且随着紫外强度和持续时间的不同而产生相应变化, 强度和持续时间影响具有交互效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号