首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development.  相似文献   

2.
BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Molecular and genetic analyses have demonstrated that the Arabidopsis thaliana gene BELL1 (BEL1) is required for proper morphogenesis of the ovule integuments. Several lines of evidence suggest that BEL1 may act, at least in part, to repress the function of the organ identity gene AGAMOUS (AG) during ovule development. To study the relative roles of BEL1 and AG, plants homozygous for ag, bel1 or both were constructed in an ap2 mutant background where ovules form even in the absence of AG function. The loss of either BEL1 or AG led to a decrease in the number of mature ovules, accompanied by an increase in primordial outgrowths. These data suggest that BEL1 and AG gene products act early in ovule development in a partially redundant manner to direct ovule identity. Development of the abnormal integuments characteristic of the Bel1- mutant phenotype was found to be dependent on AG function. Finally, BEL1 appears to be required for embryo sac development independent of both other aspects of ovule morphogenesis and AG function. This study therefore suggests that both BEL1 and AG are required for several distinct aspects of ovule morphogenesis.  相似文献   

3.
Broadhvest J  Baker SC  Gasser CS 《Genetics》2000,155(2):899-907
The short integuments 2 (sin2) mutation arrests cell division during integument development of the Arabidopsis ovule and also has subtle pleiotropic effects on both sepal and pistil morphology. Genetic interactions between sin2 and other ovule mutations show that cell division, directionality of growth, and cell expansion represent at least partially independent processes during integument development. Double-mutant analyses also reveal that SIN2 shares functional redundancy with HUELLENLOS in ovule primordium outgrowth and proximal-distal patterning and with TSO1 in promotion of normal morphological development of the four whorls of primary floral organs. All of these observations are consistent with SIN2 being a promoter of growth and cell division during reproductive development, with a primary role in these processes during integument development. On the basis of the floral pleiotropic effects observed in a majority of ovule mutants, including sin2, we postulate a relationship between ovule genes and the evolutionary origin of some processes regulating flower morphology.  相似文献   

4.
胚珠作为胚囊的携带者,在植物的生殖过程中起重要作用。胚珠是种子的前身,它在受精后发育成种子。近年来通过诱变已创造出一些胚珠和胚囊发育异常的突变体,如 sin1, bell, ovm2, ovm3。这几个突变体的表现型不但是珠被发育异常,而且胚囊不能形成或发育异常,最终结果是雌性不育。同时,已分别从蝶兰和矮牵牛的胚珠中分离出一批胚珠发育特异的基因,其中有关MADS Box基因在胚珠形成和发育中的作用研究得比较清楚,基因转化工作证实胚珠的分化和形成受一类新的MADS Box基因控制。  相似文献   

5.
Ovules are specialized reproductive organs that develop within the carpels of higher plants. In Arabidopsis, mutations in two genes, BELL1 (BEL1) and APETALA2 (AP2), disrupt ovule development. In Bel1 ovules, the inner integument fails to form, the outer integument develops abnormally, and the embryo sac arrests at a late stage of megagametogenesis. During later stages of ovule development, cells of the outer integument of a Bel1 ovule sometimes develop into a carpel-like structure with stigmatic papillae and second-order ovules. The frequency of carpel-like structures was highest when plants were grown under conditions that normally induced flowering and was correlated with ectopic expression in the ovule of AGAMOUS (AG), an organ-identity gene required for carpel formation. Together, these results suggested that BEL1 negatively regulates AG late in ovule development. Likewise, mutants homozygous for the strong AP2 allele ap2-6 sometimes displayed structures with carpel-like features in place of ovules. However, such abnormal Ap2 ovules are much less ovulelike in morphology and form earlier than the Bel1 carpel-like structures. Because one role of the AP2 gene is to negatively regulate AG expression early in flower development, it is possible that AP2 works in a similar manner in the ovule. A novel ovule phenotype observed in Bel1/Ap2-6 double mutants suggested that BEL1 and AP2 genes function independently during ovule development.  相似文献   

6.
In Arabidopsis thaliana and many other plant species, ovules arise from carpel tissue as new meristematic formations. Cell fate in proliferating ovule primordia is specified by particular ovule identity factors, such as the homeodomain factor BELL1 (BEL1) and MADS box family members SEEDSTICK (STK), SHATTERPROOF1 (SHP1), SHP2, and AGAMOUS. Both in the bel1 mutant and the stk shp1 shp2 triple mutant, integuments are transformed into carpelloid structures. Combining these mutants in a bel1 stk shp1 shp2 quadruple mutant, we showed that the bel1 phenotype is significantly enhanced. We also demonstrate that ovule differentiation requires the regulation of the stem cell maintenance gene WUSCHEL, repression of which is predominantly maintained by BEL1 during ovule development. Based on yeast three-hybrid assays and genetic data, we show that BEL1 interacts with the ovule identity MADS box factors when they dimerize with SEPALLATA proteins. We propose a model for ovule development that explains how the balance between carpel identity activity and ovule identity activity is established by a MADS box homeodomain protein complex.  相似文献   

7.
8.
9.

Background  

Arabidopsis ovules comprise four morphologically distinct parts: the nucellus, which contains the embryo sac, two integuments that become the seed coat, and the funiculus that anchors the ovule within the carpel. Analysis of developmental mutants has shown that ovule morphogenesis relies on tightly regulated genetic interactions that can serve as a model for developmental regulation. Redundancy, pleiotropic effects and subtle phenotypes may preclude identification of mutants affecting some processes in screens for phenotypic changes. Expression-based gene discovery can be used access such obscured genes.  相似文献   

10.
The fertilization process of plants is governed by different kinds of cell-cell interactions. In higher plants, these interactions are required both for recognition of the pollen grain by the female reproductive system and to direct the growth of the pollen tube inside the ovary. Despite many years of study, the signaling mechanisms that guide the pollen tube toward its target, the ovule, are largely unknown. Two distinct types of principles, mechanical and chemotropic, have been suggested to account for the directed growth of the pollen tube. The first of these two types of models implies that the guidance of the pollen tube depends on the architecture and chemical properties of the female reproductive tissues, whereas the latter suggests that the ovule provides a signal for the target-directed growth of the pollen tube. To examine such a role for the ovules, we analyzed the growth path of pollen tubes in mutants defective in ovule development in Arabidopsis. The results presented here provide unique in vivo evidence for an ovule-derived, long-range activity controlling pollen tube guidance. A morphological comparison of the ovule mutants used in this study indicates that within the ovule, the haploid embryo sac plays an important role in this long-range signaling process.  相似文献   

11.
Simple de novo screens in Arabidopsis thaliana have previously identified mutants that affect endosperm development but viable-embryo mutants have not been identified. Our strategy to identify autonomous embryo development was to uncouple embryo and endosperm fertilisation. This involved a male-sterile mutant population being crossed with a distinct pollen parent—the pollen was needed to initiate endosperm development and because it was distinct, the maternal progeny could be selected from the hybrid population. This process was refined over three stages, resulting in a viable approach to screen for autonomous embryo mutants. From 8,000 screened plants, a mutation was isolated in which the integument cells extended from the ovule and proliferated into a second complete twinned ovule. Some embryos from the mutant were normal but others developed fused cotyledons. In addition, a proportion of the progeny lacked paternal genes.  相似文献   

12.
The haploid generation of flowering plants develops within the sporophytic tissues of the ovule. After fertilization, the maternal seed coat develops in a coordinated manner with formation of the embryo and endosperm. In the arabidopsis bsister (abs) mutant, the endothelium, which is the most inner cell layer of the integuments that surround the haploid embryo sac, does not accumulate proanthocyanidins and the cells have an abnormal morphology. However, fertility is not affected in abs single mutants. SEEDSTICK regulates ovule identity redundantly with SHATTERPROOF 1 (SHP1) and SHP2 while a role in the control of fertility was not reported previously. Here we describe the characterization of the abs stk double mutant. This double mutant develops very few seeds due to both a reduced number of fertilized ovules and seed abortions later during development. Morphological analysis revealed a total absence of endothelium in this double mutant. Additionally, massive starch accumulation was observed in the embryo sac. The phenotype of the abs stk double mutant highlights the importance of the maternal-derived tissues, particularly the endothelium, for the development of the next generation.  相似文献   

13.
Light microscopic observations were made on 22 ovules from fertile plants and 108 ovules from sterile plants of the cv. KS synaptic mutant, a highly male-sterile, female-sterile line of soybean [Glycine max (L.) Merr.] (2n = 2x = 40). Ovules of fertile siblings contained normal embryo sacs and embryos. Ovules from sterile plants contained various irregularities. The most consistent abnormality was the failure of the embryo sac to attain normal size. Small megasporocytes of irregular shape were seen; only one megasporocyte of normal shape and size was noted. No linear tetrads were found. However, two ovules contained nonlinear triads. A range from zero to 28 cells and nuclei, of various sizes, were identifiable in small megagametophytes and embryo sacs. Degeneration of these nuclei and cells was noted as early as the four-nucleate gametophyte stage. Other ovules contained degenerated nucellar centers without embryo sacs. Two ovules appeared to be normal. Late postpollination stages were marked by shrunken nucellus and integuments. The presence of pollen tube traces, endosperm, and aborting embryos in ovules of hand-pollinated flowers from sterile plants suggested that no incompatibility was involved. Degeneration of the gametophyte and embryo sac contents at many developmental stages indicated a wide array of effects, possibly resulting from meiotic irregularities similar to those seen in microsporogenesis of this mutant.  相似文献   

14.
In seed plants, the ovule is the female reproductive structure, which surrounds and nourishes the gametophyte and embryo. This investigation describes the PRETTY FEW SEEDS2 (PFS2) locus, which regulates ovule patterning. The pfs2 mutant exhibited developmental defects in the maternal integuments and gametophyte. This mutation was inherited as a maternal trait, indicating that gametophyte defects resulted from ovule patterning aberrations. Specifically, the boundary between the chalaza and the nucellus, two regions of the ovule primordia, shifted towards the distal end of pfs2 ovule primordia. Results indicated that the PFS2 locus could: (i) be involved in the development of either the nucellus or the chalaza; or (ii) establish a boundary between these two regions. Examination of genetic interactions of the pfs2 mutation with other well-characterized ovule loci indicates that this locus affects integument morphogenesis. Interestingly, the pfs2 inner no outer and pfs2 strubbelig double mutants had inner integuments that appeared similar to their ancestral precursor. The fossil record indicates that the inner integument evolved by fusion of sterilized sporangia or branches around a central megasporangium. The question of whether the structures observed in these double mutants are homologous or merely analogous to the ancestral precursors of the inner integument is discussed.  相似文献   

15.
The plant life cycle includes diploid sporophytic and haploid gametophytic generations. Female gametophytes (embryo sacs) in higher plants are embedded in specialized sporophytic structures (ovules). Here, we report that two closely related mitogen-activated protein kinases in Arabidopsis thaliana, MPK3 and MPK6, share a novel function in ovule development: in the MPK6 mutant background, MPK3 is haplo-insufficient, giving female sterility when heterozygous. By contrast, in the MPK3 mutant background, MPK6 does not show haplo-insufficiency. Using wounding treatment, we discovered gene dosage-dependent activation of MPK3 and MPK6. In addition, MPK6 activation is enhanced when MPK3 is null, which may help explain why mpk3(-/-) mpk6(+/-) plants are fertile. Genetic analysis revealed that the female sterility of mpk3(+/-) mpk6(-/-) plants is a sporophytic effect. In mpk3(+/-) mpk6(-/-) mutant plants, megasporogenesis and megagametogenesis are normal and the female gametophyte identity is correctly established. Further analysis demonstrates that the mpk3(+/-) mpk6(-/-) ovules have abnormal integument development with arrested cell divisions at later stages. The mutant integuments fail to accommodate the developing embryo sac, resulting in the embryo sacs being physically restricted and female reproductive failure. Our results highlight an essential function of MPK3 and MPK6 in promoting cell division in the integument specifically during ovule development.  相似文献   

16.
17.
In higher plants the gametophyte consists of a gamete in association with a small number of haploid cells, specialized for sexual reproduction. The female gametophyte or embryo sac, is contained within the ovule and develops from a single cell, the megaspore which is formed by meiosis of the megaspore mother cell. The dyad mutant of Arabidopsis, described herein, represents a novel class among female sterile mutants in plants. dyad ovules contain two large cells in place of an embryo sac. The two cells represent the products of a single division of the megaspore mother cell followed by an arrest in further development of the megaspore. We addressed the question of whether the division of the megaspore mother cell in the mutant was meiotic or mitotic by examining the expression of two markers that are normally expressed in the megaspore mother cell during meiosis. Our observations indicate that in dyad, the megaspore mother cell enters but fails to complete meiosis, arresting at the end of meiosis 1 in the majority of ovules. This was corroborated by a direct observation of chromosome segregation during division of the megaspore mother cell, showing that the division is a reductional and not an equational one. In a minority of dyad ovules, the megaspore mother cell does not divide. Pollen development and male fertility in the mutant is normal, as is the rest of the ovule that surrounds the female gametophyte. The embryo sac is also shown to have an influence on the nucellus in wild type. The dyad mutation therefore specifically affects a function that is required in the female germ cell precursor for meiosis. The identification and analysis of mutants specifically affecting female meiosis is an initial step in understanding the molecular mechanisms underlying early events in the pathway of female reproductive development.  相似文献   

18.
Maternal control of higher plant seed development is likely to involve female sporophytic as well as female gametophytic genes. While numerous female sporophytic mutants control the production of the ovule and the embryo sac true maternal effect mutations affecting embryo and endosperm development are rare in plants. A new class of female gametophytic mutants has been isolated that controls autonomous development of endosperm. Molecular analyses of these genes, known as FIS class genes, suggest that they repress downstream seed development genes by chromatin remodelling. Expression of the FIS genes in turn is modulated by parent specific expression or genomic imprinting which in turn is controlled by DNA methylation. Thus maternal control of seed development is a complex developmental event influenced by both genetic and epigenetic processes.  相似文献   

19.
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.  相似文献   

20.
The morphogenesis of regenerated ovule and cytological changes of its megasporogenesis and embryo sac development were studied. Results showed as follows: 1. the differentiation of the regenerated ovule had followed a normal process in the order of inner integument , outer integument and then funiculus. But the form of the regenerated ovules in vitro was quite different from that of ovule in vivo. Most of the regenerated ovules were orthotropous and hemianatropous , only a few were anatropous which are the same with that in vivo. 2. the megasporogenesis and the embryo sac development also had normal cytological process ,and the Polygonum type-embryo sac consisted of one egg, two synergids , one central cell and three antipodals could be seen in mature regenerated ovule. These ex-perimental results make clear that the regenerated ovule differentiated directly from explant could accomplish the complex processes of megasporogenesis and embryo sac development. By this fact ,authors infer that once the differentiation of ovule primordium, the complex biochemical programs for the megasorogenesis and embryo sac development can be controlled by the ovule itself and need no more information from flower bud and /or plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号