首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The somitic involvement in the formation of the vertebral column was examined using the chick-quail chimaera model. Single cervical somites from quail donor embryos were transplanted into similarly staged chick host embryos. Following further incubation, serial sections of variously staged embryos were stained with the Feulgen reaction to distinguish the two cell populations. Quail cells were generally located within a delimited region in one half of each of the two adjacent vertebrae, as well as in the intervening disc. The horizontal plane of division through each vertebra passed approximately through the centre of the body and divided the neural arch into rostral and caudal halves through the rostral border of the caudal notch. These results give support to the controversial theory of resegmentation, in which it was suggested that there is an apparent realignment of segmentation between the somite stage and the subsequent vertebral stage of development.  相似文献   

2.
We have examined the somitic cell contribution to the vertebral column of the chick by genetic labeling of sclerotomal cells in early development. Single somites of embryonic Day 2 embryos were filled with retroviral particles containing the lacZ transducing vector BAG. After a further 14 or 17 days of incubation the embryos were fixed and the vertebral column was sectioned and stained histochemically for the lacZ gene product beta-galactosidase. Cells staining for the enzyme were found exclusively on the injected side of two vertebral segments; the staining was largely restricted, however, to the caudal half of the more rostral segment and the rostral half of the next more caudal segment. No embryos were observed with labeling in less than two vertebral segments. Moreover, labeled cells were not uniformly distributed within the labeled region of each vertebra; the neural arch, for example, usually contained a higher proportion of labeled cells than did the centrum. These observations support the concept of resegmentation, whereby a vertebra forms from sclerotomal cells derived from two consecutive somites resulting in a vertebral column shifted by one half segment with respect to the segmented boundaries of the somites. The quantitative distribution of labeled cells in the vertebrae also suggests that sclerotomal cells populate the region of a future vertebral segment in an orderly fashion dependent on when the cells migrate from the somite.  相似文献   

3.
Colonies of the marine hydroid, Hydractinia, are able to discriminate between their own tissues and those belonging to unrelated conspecifics. We have studied the ontogeny of this allorecognition system by a series of allogeneic transplantations along a developmental gradient, including two-cell-stage embryos, 8 h morulae, planula larvae and metamorphosed polyps. Allograft acceptance of incompatible tissue was observed in all embryonic and larval stages, whereas metamorphosed polyps rejected incompatible transplanted allografts. Most of the chimeras established at the two-cell-stage, although composed of two allogeneic, incompatible entities with mismatching allorecognition loci, developed normally and remained stable through metamorphosis. The results of post metamorphic transplantation assays among the chimeras and the naive ramets, suggested that both incompatible genotypes were still represented in the chimera despite the onset of alloimmune maturation. The naive colonies always rejected each other. Chimeras established from later embryonic and larval stages did not develop into adult chimeric entities, but rather separated immediately post metamorphosis. We thus show that (1) allorecognition in this species matures during metamorphosis and (2) genetically incompatible entities may coexist in one immunologically mature, chimeric soma, provided that they were grafted early enough in ontogeny.  相似文献   

4.
The association between bleomycin-induced chromatid aberrations and BUdR-label exchange between sister chromatids was investigated in order to evaluate Revell's exchange hypothesis for the formation of chromatid aberrations. The results of this study indicate that a larger than expected proportion of chromatid breaks can be accounted for by the exchange hypothesis though not all breaks are the result of incomplete exchange.  相似文献   

5.
This essay has three parts. First, I posit that much research in contemporary evodevo remains steeped in a traditional framework that views traits and trait differences as being caused by genes and genetic variation, and the environment as providing an external context in which development and evolution unfold. Second, I discuss three attributes of organismal development and evolution, broadly applicable to all organisms and traits that call into question the usefulness of gene- and genome-centric views of development and evolution. I then focus on the third and main aim of this essay and ask: what conceptual and empirical opportunities exist that would permit evodevo research to transcend the traditional boundaries inherited from its parent disciplines and to move toward the development of a more comprehensive and realistic theory of developmental evolution? Here, I focus on three conceptual frameworks, the theory of facilitated variation, the theory of evolution by genetic accommodation, and the theory of niche construction. I conclude that combined they provide a rich, interlocking framework within which to revise existing and develop novel empirical approaches toward a better understanding of the nature of developmental evolution. Examples of such approaches are highlighted, and the consequences of expanding existing frameworks are discussed.  相似文献   

6.
The "survival of the fittest" is the paradigm of Darwinian evolution in which the best-adapted replicators are favored by natural selection. However, at high mutation rates, the fittest organisms are not necessarily the fastest replicators but rather are those that show the greatest robustness against deleterious mutational effects, even at the cost of a low replication rate. This scenario, dubbed the "survival of the flattest", has so far only been shown to operate in digital organisms. We show that "survival of the flattest" can also occur in biological entities by analyzing the outcome of competition between two viroid species coinfecting the same plant. Under optimal growth conditions, a viroid species characterized by fast population growth and genetic homogeneity outcompeted a viroid species with slow population growth and a high degree of variation. In contrast, the slow-growth species was able to outcompete the fast species when the mutation rate was increased. These experimental results were supported by an in silico model of competing viroid quasispecies.  相似文献   

7.
During vertebrate neural tube formation, the initially lateral borders between the neural and epidermal ectoderm fuse to form the definitive dorsal region of the embryo, while the initially dorsally located notochord-floor plate complex is being internalised. Along the definitive dorso-ventral body axis, one can distinguish an epaxial (dorsal to the notochord) and a hypaxial (ventral to the notochord) body region. The mesodermal somites on both sides of the notochord and neural tube give rise to the trunk skeleton and skeletal muscle. Muscle forms from the somite-derived dermomyotomes and myotomes that elongate dorsally and ventrally. Based on gene expression patterns and comparative embryology, it is proposed here that the epaxial (dermo)myotome region in amniote embryos is subdivided into a dorsalmost and a centrally intercalated subregion. The intercalated subregion abuts to the hypaxial (dermo)myotome region that elongates ventrally via the hypaxial somitic bud. The dorsalmost subregion elongates towards the dorsal neural tube and is proposed to derive from an epaxial somitic bud. The dorsalmost and hypaxial somite derivatives share specific gene expression patterns which are distinct from those of the intercalated somite derivatives. The intercalated somite derivatives develop adaxially, i.e. at the level of the notochord-floor plate complex. Thus, the dorsalmost and intercalated (dermo)myotome subregions may be influenced preferentially by signals from the dorsal neural tube and from the notochord-floor plate complex, respectively. These (dermo)myotome subregions are sharply delimited from each other by molecular boundary markers, including Engrailed and Wnts. It thus appears that the molecular network that polarises borders in Drosophila and vertebrate embryogenesis is redeployed during subregionalisation of the (dermo)myotome. It is proposed here that cells within the amniote (dermo)myotome establish polarised borders with organising capacity, and that the epaxial somitic bud represents a mirror-image duplication of the hypaxial somitic bud along such a border. The resulting epaxial-intercalated/adaxial-hypaxial regionalisation of somite derivatives is conserved in vertebrates although the differentiation of sclerotome and myotome starts heterochronically in embryos of different vertebrate groups.  相似文献   

8.
9.
10.
In 1963,Margoliash discovered the unexpected genetic equidistance result after comparing cytochrome c sequences from different species.This finding,together with the hemoglobin analyses of Zuckerkandl and Pauling in 1962,directly inspired the ad hoc molecular clock hypothesis.Unfortunately,however,many biologists have since mistakenly viewed the molecular clock as a genuine reality,which in turn inspired Kimura,King,and Jukes to propose the neutral theory of molecular evolution.Many years of studies have found numerous contradictions to the theory,and few today believe in a universal constant clock.What is being neglected,however,is that the failure of the molecular clock hypothesis has left the original equidistance result an unsolved mystery.In recent years,we fortuitously rediscovered the equidistance result,which remains unknown to nearly all researchers.Incorporating the proven virtues of existing evolutionary theories and introducing the novel concept of maximum genetic diversity,we proposed a more complete hypothesis of evolutionary genetics and reinterpreted the equidistance result and other major evolutionary phenomena.The hypothesis may rewrite molecular phylogeny and population genetics and solve major biomedical problems that challenge the existing framework of evolutionary biology.  相似文献   

11.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

12.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

13.
SUMMARY Evolutionary developmental biology has already made a major contribution to our understanding of evolutionary patterns, notably homology. However, while it has the potential to make an equally important contribution to our understanding of evolutionary mechanisms, and indeed to the integration of mechanism and pattern, it has not yet done so. This paper explores how this potential may be realized. In particular, I focus on the limitations of present-day neo-Darwinian theory, and indicate how a combination of the neo-Darwinian and "evo-devo" approaches provides a more inclusive view of evolutionary mechanisms with greater explanatory power. There is a particular focus on developmental reprogramming, which lies logically between mutation and selection, yet has been neglected in mainstream evolutionary theory. The inclusion of developmental reprogramming in the list of evolutionary mechanisms leads to a view that the direction of evolutionary change is determined by a combination of internal and external factors, rather than being controlled entirely by the environment.  相似文献   

14.
15.
In the mouse embryo, neural crest mesenchyme associated with the first and second pharyngeal arches escapes from the epithelium that forms the tips of the midbrain/rostral hindbrain and preotic hindbrain neural folds. To investigate the ultrastructure of crest formation, embryos with four to eight pairs of somites were processed for transmission electron microscopy. In the earliest event related to crest formation, crest precursors in the midbrain/rostral hindbrain elongated and moved all or most of their contents to the basal region of the epithelium. Elongation was probably mediated by apical bands of microfilaments and longitudinally oriented microtubules. Elongated cells then relinquished apical associations while nonelongated cells maintained those associations and withdrew from the basal lamina. This resulted in an epithelium stratified into apical and basal (crest precursor) layers. The coalescence of enlarging extra-cellular spaces opened a delaminate gap between the two layers. Additional crest precursors entered this gap from the apical layer. From the time crest precursors began moving basally, some formed microfilament- and/or microtubule-containing processes, which penetrated the basal lamina. Some of these cells moved their contents into the larger, microtubule-containing processes, perhaps thereby escaping from the epithelium. Soon after elongating cells appeared, the basal lamina beneath the epithelium began to degrade in a pattern unrelated to process formation. This ultimately resulted in disruption of the lamina, dispersal of the basal layer of the epithelium, and release of the crest precursors in the delaminate gap. Once crest formation was complete, the apical layer reformed a basal lamina on a patch-by-patch, cell-by-cell basis. In the preotic hindbrain, elongating crest precursors apparently forced their basal faces through the basal lamina and then relinquished apical association to escape. As a result, the lamina was disrupted before the epithelium could stratify, and enlarged extracellular spaces appeared among mesenchymal cells rather than creating a delaminate gap. The failure of elongation to disrupt the basal lamina in the midbrain/rostral hindbrain and its success in the preotic hindbrain might be due to less-vigorous, less-concerted elongation in the midbrain/rostral hindbrain or to earlier, more rapid degradation of the lamina in the preotic hindbrain.  相似文献   

16.
In the marine hydroid Hydractinia echinata, metamorphosis transforms the spindle-shaped larva into a primary polyp. It bears a hypostome with a ring of tentacles at its apical end, a gastric region in the middle and stolons at the base. In nature, metamorphosis is induced in response to external stimuli provided by bacteria. These stimuli can be replaced by artificial inducers, one of which is heat shock. Among heat shock treated stages are those undergoing complete metamorphosis but also specimens forming chimeras of different developmental stages. In the chimeric larvae, the posterior is transformed into the apical hypostome of the adult polyp while the anterior part of the larva persists as larval tissue. After transverse sectioning, these stage chimeras regenerate the missing body parts with respect to the nature of the tissue at the wound surface. This shows that the decision to make larva or polyp morphology depends not on the majority of the tissue in the original body section, but on stage specificity within the regenerating animal part. Single cells can escape from this general rule, since RFamide nerve cells which usually differentiate in polyp tissue appear in regenerated larval tails of sectioned stage chimeras. The results indicate that the pattern-forming system of the larva and of the adult have features in common. The primary signals controlling patterning along the anterior-posterior axis in larvae and the apical-basal axis in polyps arethus likelyto be the same while the interpretation of these primary signals by the individual cells changes during metamorphosis.  相似文献   

17.
18.
We characterized a medaka mutant, vertebra imperfecta (vbi), that displays skeletal defects such as craniofacial malformation and delay of vertebra formation. Positional cloning analysis revealed a nonsense mutation in sec24d encoding a component of the COPII coat that plays a role in anterograde protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Immunofluorescence analysis revealed the accumulation of type II collagen in the cytoplasm of craniofacial chondrocytes, notochord cells, and the cells on the myoseptal boundary in vbi mutants. Electron microscopy analysis revealed dilation of the ER and defective secretion of ECM components from cells in both the craniofacial cartilage and notochord in vbi. The higher vertebrates have at least 4 sec24 paralogs; however, the function of each paralog in development remains unknown. sec24d is highly expressed in the tissues that are rich in extracellular matrix and is essential for the secretion of ECM component molecules leading to the formation of craniofacial cartilage and vertebra.  相似文献   

19.
The characterization of the metabolic pathways of new chemical entities with a special emphasis on detecting potentially reactive metabolites is increasingly being performed early in the drug discovery process. In the present study, the preliminary in vitro metabolic routes of a series of novel 2-substituted benzothiophene-containing discovery molecules were determined in fresh and cryopreserved hepatocyte suspensions. The objectives of this investigation were: (1) to use systematic LC/MS and LC/MS/MS analyses to provide a preliminary characterization of the in vitro metabolism of these compounds, with a particular focus on metabolites potentially arising from reactive intermediates, and (2) to identify potential lead molecules not associated with such metabolic pathways. This benzothiophene-containing series of compounds was characterized by the formation of five metabolites, at least two of which (dihydrodiol formation and glutathione adduct of the dihydrohydroxyl) were indicative of the formation of a reactive arene oxide intermediate. Tandem mass spectral analysis of the metabolites formed from a variety of structurally similar compounds demonstrated this reactive arene oxide intermediate to form on the 2-substituted benzothiophene moiety. Substitution of the benzothiophene with other functional groups eliminated these potentially toxic metabolites. The data presented here demonstrate the utility of performing metabolic route screens early in the drug discovery process prior to lengthy and costly radiolabeled studies, and furthermore, implicate a 2-substituted benzothiophene moiety as a substrate for formation of a reactive arene oxide intermediate.  相似文献   

20.
Ecological and mutational explanations for the evolution of sexual reproduction have usually been considered independently. Although many of these explanations have yielded promising theoretical results,experimental support for their ability to overcome a twofold cost of sex has been limited. For this reason, it has recently been argued that a pluralistic approach, combining effects from multiple models, may be necessary to explain the apparent advantage of sex. One such pluralistic model proposes that parasite load and synergistic epistasis between deleterious mutations might interact to create an advantage for recombination.Here, we test this proposal by comparing the fitness functions of parasitized and parasite-free genotypes of Escherichia coli bearing known numbers of transposon-insertion mutations. In both classes, we failed to detect any evidence for synergistic epistasis. However, the average effect of deleterious mutations was greater in parasitized than parasite-free genotypes. This effect might broaden the conditions under which another proposed model combining parasite-host coevolutionary dynamics and mutation accumulation can explain the maintenance of sex. These results suggest that, on average, deleterious mutations act multiplicatively with each other but in synergy with infection in determining fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号