首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phylogeny was reconstructed for 23 populations of fringe-toed lizards (genus Uma) from the three most northern species of the genus, including the Mojave fringe-toed lizard U. scoparia, the Colorado Desert fringe-toed lizard U. notata, and the endangered Coachella Valley fringe-toed lizard U. inornata. The outgroup taxa were the zebra-tailed lizard, Callisaurus draconoides; the lesser earless lizard, Holbrookia maculata; and the greater earless lizard, Cophosaurus texanus. Evaluation of 1630 combined nucleotide sequence from the mitochondrial genes ATPase 6 and cytochrome b yielded 10 most parsimonious trees. Reweighting the characters using the rescaled consistency index eliminated eight of these trees. The remaining two trees differ only in the placement of two individuals from the Superstition Mountains which either formed a monophlyetic unit or grouped with one individual from the Anza-Borrego population. The preferred phylogeny, one more consistent with geography, had two primary clades: one consisting of U. scoparia and the other placing U. inornata inside the clade containing U. notata. Uma inornata was most closely related to nearby U. notata notata, as opposed to more distant U. notata rufopunctata.  相似文献   

2.
Evolutionary affiliations of eighteen families of Hemiptera (s.l.) are inferred using molecular phylogenetic analysis of nucleotide (nt) sequences of 18S rDNAs. Exemplar taxa include: Archaeorrhyncha (=Fulgoromorpha): flatid, issid, dictyopharid, cixiid and delphacid; Prosorrhyncha (=Heteropterodea): Peloridiomorpha (=Coleorhyncha) -peloridiid, Heteroptera gerrid, lygaeid and mirid; Clypeorrhyncha [=extant (monophyletic) cicadomorphs]: cicadid, cercopoids (cercopid, aphrophorid), membracid and cicadellids (deltocephaline and cicadelline); and Sternorrhyncha: psyllid, aleyrodid, diaspidid and aphid. Analysed sequences encompass a region beginning ?550 nucleotides (nts) from the 5'-end to ?200 nts upstream from the 3'-end of the gene [?1150 base pairs (bp) in euhemipteran to >1400 bp in sternorrhynchan taxa]. Maximum parsimony and bootstrap analyses (PAUP) identify four principal hemipteran clades, Stenorrhyncha, Clypeorrhyncha, Archaeorrhyncha and Prosorrhyncha. These lineages are identified by synapomorphies distributed throughout the gene. Sternorrhyncha is a sister group to all other Hemiptera (i.e. Euhemiptera sensu Zrzavy), rendering Homoptera paraphyletic. Within Euhemiptera, clades Clypeorrhyncha, Archaeorrhyncha, Prosorrhyncha and Heteroptera are supported by one, three, two and three synapomorphic sites, respectively. There is equitable parsimonious inference for Archaeorrhyncha as the sister group to Prosorrhyncha (Neoherriiptera sensu Sorensen et al.) or Clypeorrhyncha, in either case rendering Auchenorrhyncha paraphyletic. Neohemiptera is supported by one synapomorphy. Within Clypeorrhyncha, clade cicada + cercopoids is the sister group of the clade cicadellids + membracid (Membracoidea sensu Dietrich & Deitz). Among archaeorrhynchans, clade delphacid + cixiid is the sister group of the clade dictyopharid + flatid + issid. Within Prosorrhyncha, the peloridiid is sister to the Heteroptera. Within Heteroptera, gerrid is the sister group of the clade mirid + lygaeid (Panheteroptera sensu Schuh). Based on secondary structure of synonymous 18S rRNA, two synapomorphies each of Sternorrhyncha, Prosorrhyncha and Heteroptera are compensatory substitutions on stem substructures. All other synapomorphies identifying major lineages of Hemiptera are noncompensatory substitutions on either bulges or stems. Short basal internodal distances suggest radiation of hemipteran lineages at the suborder level occurred rapidly. Morphological, palaeoentomological and eco-evolutionary factors supporting the 18S rDNA-based phylogenetic tree are discussed.  相似文献   

3.
Cladistic analyses of chloroplast DNA disagree with current classifications by placingPolemoniaceae near sympetalous families with two staminal whorls, includingFouquieriaceae andDiapensiaceae, rather than near sympetalous families with a single staminal whorl, such asHydrophyllaceae andConvolvulaceae. To explore further the affinities ofPolemoniaceae, we sequenced 18S ribosomal DNA for eight genera ofPolemoniaceae and 31 families representing a broadly definedAsteridae. The distribution of variation in these sequences suggest some sites are hypervariable and multiple hits at these sites have obscured much of the hierarchical structure present in the data. Nevertheless, parsimony, least-squares minimum evolution, and maximum likelihood methods all support a monophyleticPolemoniaceae that is placed nearFouquieriaceae, Diapensiaceae and related ericalean families.  相似文献   

4.
The Haptophyta is a common algal group in many marine environments, but only a few species have been observed in freshwaters, with DNA sequences available from just a single species, Crysochromulina parva Lackey, 1939. Here we investigate the haptophyte diversity in a high mountain lake, Lake Finsevatn, Norway, targeting the variable V4 region of the 18S rDNA gene with PCR and 454 pyrosequencing. In addition, the freshwater diversity of Pavlovophyceae was investigated by lineage-specific PCR-primers and clone library sequencing from another Norwegian lake, Lake Svaersvann. We present new freshwater phylotypes belonging to the classes Prymnesiophyceae and Pavlovophyceae, as well as a distinct group here named HAP-1. This is the first molecular evidence of a freshwater species belonging to the class Pavlovophyceae. The HAP-1 and another recently detected marine group (i.e. HAP-2) are separated from both Pavlovophyceae and Prymnesiophyceae and may constitute new higher order taxonomic lineages. As all obtained freshwater sequences of haptophytes are distantly related to the freshwater species C. parva, the phylogeny demonstrates that haptophytes colonized freshwater on multiple independent occasions. One of these colonizations, which gave rise to HAP-1, took place very early in the history of haptophytes, before the radiation of the Prymnesiophyceae.  相似文献   

5.
A phylogenetic analysis of a combined data set for 560 angiosperms and seven outgroups based on three genes, 18S rDNA (1855 bp), rbcL (1428 bp), and atpB (1450 bp) representing a total of 4733 bp is presented. Parsimony analysis was expedited by use of a new computer program, the RATCHET. Parsimony jackknifing was performed to assess the support of clades. The combination of three data sets for numerous species has resulted in the most highly resolved and strongly supported topology yet obtained for angiosperms. In contrast to previous analyses based on single genes, much of the spine of the tree and most of the larger clades receive jackknife support 250%. Some of the noneudicots form a grade followed by a strongly supported eudicot clade. The early‐branching angiosperms are Amborellaceae, Nymphaeaceae, and a clade of Austrobaileyaceae, Illiciaceae, and Schi‐sandraceae. The remaining noneudicots, except Ceratophyllaceae, form a weakly supported core eumagnoliid clade comprising six well‐supported subclades: Chloranthaceae, monocots, WinteraceaeICanellaceae, Piperales, Laurales, and Magnoliales. Ceratophyllaceae are sister to the eudicots. Within the well‐supported eudicot clade, the early‐diverging eudicots (e.g. Proteales, Ranunculales, Trochodendraceae, Sabiaceae) form a grade, followed by the core eudicots, the monophyly of which is also strongly supported. The core eudicots comprise six well‐supported subclades: (1) Berberidopsidaceae/Aextoxicaceae; (2) Myrothamnaceae/ Gunneraceae; (3) Saxifragales, which are the sister to Vitaceae (including Leea) plus a strongly supported eurosid clade; (4) Santalales; (5) Caryophyllales, to which Dilleniaceae are sister; and (6) an asterid clade. The relationships among these six subclades of core eudicots do not receive strong support. This large data set has also helped place a number of enigmatic angiosperm families, including Podostemaceae, Aphloiaceae, and Ixerbaceae. This analysis further illustrates the tractability of large data sets and supports a recent, phylogenetically based, ordinal‐level reclassification of the angiosperms based largely, but not exclusively, on molecular (DNA sequence) data.  相似文献   

6.
Phylogenetic relationships within the Acanthocephala have remained unresolved. Past systematic efforts have focused on creating classifications with little consideration of phylogenetic methods. The Acanthocephala are currently divided into three major taxonomic groups: Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. These groups are characterized by structural features in addition to the taxonomy and habitat of hosts parasitized. In this study the phylogenetic relationships of 11 acanthocephalan species are examined with 18S rDNA sequences. Maximum parsimony, minimum evolution, and maximum likelihood methods are used to estimate phylogenetic relationships. Within the context of sampled taxa, all phylogenetic analyses are consistent with monophyly of the major taxonomic groups of the Acanthocephala, suggesting that the current higher order classification is natural. The molecular phylogeny is used to examine patterns of character evolution for various structural and ecological characteristics of the Acanthocephala. Arthropod intermediate host distributions, when mapped on the phylogeny, are consistent with monophyletic groups of acanthocephalans. Vertebrate definitive host distributions among the Acanthocephala display independent radiations into similar hosts. Levels of uncorrected sequence divergence among acanthocephalans are high; however, relative-rate tests indicate significant departure from rate uniformity among acanthocephalans, arthropods, and vertebrates. This precludes comparison of 18S divergence levels to assess the relative age of the Acanthocephala. However, other evidence suggests an ancient origin of the acanthocephalan-arthropod parasitic association.  相似文献   

7.
8.
Annelid systematics and the ingroup relationships of polychaete annelids are matter of ongoing debates in recent analyses. For the investigation of sedentary polychaete relationships a molecular phylogenetic analysis was conducted based on 94 sequences of 18S rDNA, including unpublished sequences of 13 polychaete species. The data set was analyzed with maximum parsimony and maximum likelihood methods, as wells as Bayesian inference. As in previous molecular analyses the monophyly of many traditional polychaete families is confirmed. No evidence has been found for a possible monophyly of Canalipalpata or Scolecida. In all analyses a placement of the Echiura as a derived polychaete ingroup with a close relationship to the Capitellidae is confirmed. The orbiniids appear paraphyletic with regard to Questa. Travisia is transferred from Opheliidae to Scalibregmatidae. The remaining opheliids include a yet undescribed ctenodrilid species from Elba, whereas the other investigated ctenodrilid Ctenodrilus serratus groups with the Cirratulidae and shows a close affinity to the cirratulid genus Dodecaceria. A common ancestry of Branchiomaldane and Arenicola, which has been predicted on morphological data, is confirmed by the analysis and a sistergroup relationship between Arenicolidae and Maldanidae is also recovered. These results support our assumption that on the basis of a broader taxon sampling the phylogenetic position of controversially discussed taxa can be inferred by using 18S rDNA sequence data.  相似文献   

9.
We have investigated the evolutionary relationships between two facultatively anaerobic Magnetospirillum strains (AMB-1 and MGT-1) and fastidious, obligately microaerophilic species, such as Magnetospirillum magnetotacticum, using a molecular phylogenetic approach. Genomic DNA from strains MGT-1 and AMB-1 was used as a template for amplification of the genes coding for 16S rRNA (16S rDNA) by the polymerase chain reaction. Amplified DNA fragments were sequenced (1,424 bp) and compared with sequences for M. magnetotacticum MS-1 and Magnetospirillum gryphiswaldense MSR-1. Phylogenetic analysis of the aligned 16S rDNA sequences indicated that the two new magnetic spirilla, AMB-1 and MGT-1, lie within the alpha subdivision (alpha-1) of the eubacterial group Proteobacteria and are closely related to Rhodospirillum fulvum and to several endosymbiotic bacteria. Strains AMB-1, MGT-1, and MS-1 formed a cluster, termed group I, in which they were more closely related to each other than to group II, which contained M. gryphiswaldense MSR-1. Group I strains were also physiologically distinct from strain MSR-1. Sequence alignment studies allowed elucidation of genus-specific regions of the 16S rDNA, and oligonucleotide primers complementary to two of these regions were used to develop a specific polymerase chain reaction assay for detection of magnetic spirilla in natural samples.  相似文献   

10.
11.
Phylogenetic relationships among the Braconidae were examined using homologous 16S rDNA, 28S rDNA D2 region, and 18S rDNA gene sequences and morphological data using both PAUP* 4.0 and MRBAYES 3.0B4 from 88 in-group taxa representing 35 subfamilies. The monophyletic nature of almost all subfamilies, of which multiple representatives are present in this study, is well-supported except for two subfamilies, Cenocoelinae and Neoneurinae that should probably be treated as tribal rank taxa in the subfamily Euphorinae. The topology of the trees generated in the present study supported the existence of three large generally accepted lineage or groupings of subfamilies: two main entirely endoparasitic lineages of this family, referred to as the "helconoid complex" and the "microgastroid complex," and the third "the cyclostome." The Aphidiinae was recovered as a member of the non-cyclostomes, probably a sister group of Euphorinae or Euphorinae-complex. The basal position of the microgastroid complex among the non-cyclostomes has been found in all our analyses. The cyclostomes were resolved as a monophyletic group in all analyses if two putatively misplaced groups (Mesostoa and Aspilodemon) were excluded from them. Certain well-supported relationships evident in this family from the previous analyses were recovered, such as a sister-group relationships of Alysiinae+Opiinae, of Braconinae+Doryctinae, and a close relationship between Macrocentrinae, Xiphozelinae, Homolobinae, and Charmontinae. The relationships of "Ichneutinae + ((Adeliinae + Cheloninae) + (Miracinae + (Cardiochilinae + Microgastrinae)))" was confirmed within the microgastroid complex. The position of Acampsohelconinae, Blacinae, and Trachypetinae is problematic.  相似文献   

12.
13.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   

14.
SSU rDNA was sequenced from the lichenized fungiBunodophoron scrobiculatum andLeifidium tenerum (Sphaerophoraceae), andStereocaulon ramulosum andPilophorus acicularis (Stereocaulaceae) and analysed by maximum parsimony with 44 homologous ascomycete sequences in a cladistic study. A small insertion (c. 60 nt.) was found in the sequence ofLeifidium tenerum. Sphaerophoraceae constitutes a strongly supported monophyletic group which groups together withLecanora dispersa and theStereocaulaceae. Together withPorpidia crustulata, this larger group is a sistergroup to thePeltigerineae. This analysis thus supports theLecanorales as monophyletic, includingSphaerophoraceae and thePeltigerineae, but does not provide strong support for this monophyly. The analysis also suggests that the prototunicate ascus in theSphaerophoraceae is a reversion to the plesiomorphic state. Based on morphological, anatomical and chemical reasons,Sphaerophoraceae is proposed to belong to one of the groups presently included in the paraphyletic suborderCladoniineae within theLecanorales.  相似文献   

15.
16S ribosomal RNA gene sequences from seven strains of Aquaspirillum peregrinum, Aqu. itersonii, Aqu. polymorphum, and Oceanospirillum pusillum were compared with homologous sequences from other members of helical-shaped bacteria. The bootstrapped neighbor-joining tree, inferred from 887 aligned sites, placed the spirillum taxa assigned to Aquaspirillum, Oceanospirillum, Azospirillum, Magnetospirillum, Rhodospirillum, and Rhodocista of the Proteobacteria in seven clusters of alpha Proteobacteria separately from other shapes of bacteria. Aqu. peregrinum and Aqu. itersonii grouped together in 88% bootstrap support. They were more related to Rhodospirillum rubrum and Rsp. photometricum than Aqu. polymorphum. Aqu. polymorphum was close to Magnetospirillum gryphiswaldense, Mag. magnetotacticum, Rsp. fulvum, and Rsp. molischianum, and more close to Mag. gryphiswaldense. Oce. pusillum was not related to other spirillum taxa and was placed in a separate branch. Rhodocista was very closely related to Azospirillum. Photosynthesis and magnetotaxis, as phenotypic characters, were not important in the classification of helical bacteria.  相似文献   

16.
The phylogenetic relationships of nine species of freshwater sponges, representing the families Spongillidae, Lubomirskiidae, and Metaniidae, were inferred from analyses of 18S rDNA, cytochrome oxidase subunit I (COI) mtDNA, and internal transcribed spacer 2 (ITS2) rDNA sequences. These species form a strongly supported monophyletic group within the Demospongiae, with the lithistid Vetulina stalactites as the sister taxon. Within the freshwater sponge clade, the basal taxon is not resolved. Depending upon the method of analysis and sequence, the metaniid species, Corvomeyenia sp., or the spongillid species, Trochospongilla pennsylvanica , emerges as the basal species. Among the remaining freshwater sponge species, the spongillids, Spongilla lacustris and Eunapius fragilis , form a sister group to a clade comprised of the spongillid species, Clypeatula cooperensis , Ephydatia fluviatilis , and Ephydatia muelleri , and the lubomirskiid species, Baikalospongia bacillifera and Lubomisrkia baicalensis . C. cooperensis is the sister taxon of E. fluvialitis , and E. muelleri is the sister taxon of ( B. bacillifera + L. baicalensis ). The family Spongillidae and the genus Ephydatia are thus paraphyletic with respect to the lubomirskiid species; Ephydatia is also paraphyletic to C. cooperensis . We suggest that C. cooperensis be transferred to the genus Ephydatia and that the family Lubomirskiidae be subsumed into the Spongillidae.  相似文献   

17.
Recent studies based on molecular data (18S rDNA and partial 28S rDNA) and morphology did not resolve a terminal polytomy within the Polyopisthocotylea. Here, we have used sequences from the full domain D2 of the 28S rDNA for 24 species (18 new sequences) with three phylogenetic methods, maximum parsimony, neighbour-joining and maximum likelihood, to infer the relationships among the Polyopisthocotylea. The analysis of the domain D2 of the 28S rDNA has been performed on two data sets. The first one, complete, included the Polystomatidae as the outgroup in order to infer general relationships, and the second one, reduced, excluded the Polystomatidae and the polyopisthocotylean parasites of chondrichthyans, but used the Mazocraeidae as the outgroup in order to resolve the relationships between the terminal groups. The topology found, sustained by high bootstrap and decay index value, is: (outgroup (Chimaericolidae (Mazocraeidae (Gastrocotylinea, other Polyopisthocotylea)))). The polyopisthocotylean parasites of chondrichthyans are the sister-group of the polyopisthocotylean parasites of teleosts. In the latter, the Mazocraeidae, essentially parasites of Clupeidae, have a basal position. The polytomy between Gastrocotylinea, Discocotylinea and Microcotylinea is partially resolved in this study for the first time: the Gastrocotylinea are the sister-group of an unresolved group including the Microcotylinea, Discocotylinea and Plectanocotylidae. Inclusion of the Plectanocotylidae in the suborder Mazocraeinea is rejected. Monophyly of the Microcotylinea and Plectanocotylidae is confirmed, but monophyly of the Discocotylinea is questioned by the exclusion of Diplozoon.  相似文献   

18.
The phylogeny of the Syndermata (Rotifera: Monogononta, Bdelloidea, Seisonidea; Acanthocephala: Palaeacanthocephala, Eoacanthocephala, Archiacanthocephala) is key to understanding the evolution of acanthocephalan endoparasitism from free-living ancestors. In the present study, maximum likelihood, distance/neighbor-joining, and maximum parsimony analyses have been carried out based on 18S rDNA data of 22 species (four new sequences). The results suggest a monophyletic origin of the Eurotatoria (Monogononta+Bdelloidea). Seison appears as the acanthocephalan sistergroup. Palaeacanthocephala split into an "Echinorhynchus"-and a "Leptorhynchoides"-group, the latter sharing a monophyletic origin with the Eoacanthocephala and Archiacanthocephala. As inferred from the phylogeny obtained acanthocephalan endoparasitism evolved from a common ancestor of Seison and Acanthocephala that lived epizoically on an early mandibulate. Probably, an acanthocephalan stem species invaded the mandibulate host, thus establishing an endoparasitic lifestyle. Subsequently, vertebrates (or gnathostomes) became part of the parasite's life cycle. In the stem line of the Archiacanthocephala, a terrestrial life cycle has evolved, with an ancestor of the Tracheata (Insecta, Myriapoda) acting as intermediate host.  相似文献   

19.
Jondelius  Ulf 《Hydrobiologia》1998,383(1-3):147-154
Partial 18S rDNA sequences from 29 flatworms and 2 outgroup taxa were used in a cladistic analysis of the Platyhelminthes. Support for the clades in the resulting single most parsimonious tree was estimated through bootstrap analysis, jack-knife analysis and decay indices. The Acoelomorpha (Acoela and Nemertodermatida) were absent from the most parsimonious tree. The Acoela and the Fecampiidae form a strongly supported clade, the sister group of which may be the Tricladida. There is some support for monophyly of the rhabdocoel taxon Dalyellioida, previously regarded as paraphyletic. The sister group of the Neodermata remains unresolved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号