首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expressible HLA class II alpha- and beta-chain cDNA were used for DNA-mediated gene transfer to produce L cell transfectants expressing single types of human class II molecules. Cloned transfectants expressing nine different class II molecules were isolated: DR alpha: DR1 beta I, DR alpha: DR4 beta I, DR alpha: DR5 beta I, DR alpha: DR5 beta III (DRw52), DR alpha: DR7 beta I, DR alpha: DR4/7 beta IV (DRw53), DQ7 alpha: DQw2 beta, DQ7 alpha: DQw3 beta, and DPw4 alpha: DPw4 beta. These class II-expressing transfectants were used to analyze by flow cytometry the molecular specificities of 20 anti-class II mAb. These analyes indicate that some mAb are more broadly reactive than was previously thought based on immunochemical studies. In contrast, the narrow molecular specificities of other anti-class II mAb were confirmed by this approach. Transfectants expressing human class II molecules should be valuable reagents for studies of B cell and T cell defined epitopes on these molecules.  相似文献   

2.
A functional analysis was undertaken of the effects of mutating single amino acid residues in the alpha chain of the I-Ak molecule (to alanine; residues 50-79) on the ability of I-Ak transfectants to process and present influenza haemagglutinin to CD4+ T cell clones specific for two major antigenic sites of the HA1 subunit. In each instance, T cells were insensitive to a majority of substitutions in Ak with the exception of a few critical residues that differed for individual T cell clones. But more significantly, the failure of T cell clones to respond to mutant influenza viruses, containing drift substitutions within a T cell recognition site, in association with wild type I-Ak, could be reversed by single substitutions in Ak alpha. A T cell clone specific for HA1 120-139 failed to respond to a laboratory mutant virus (HA1 135 Gly----Arg) whereas optimal responses were observed with a mutant Ak transfectant (Ak alpha 56 Arg----Ala). Similarly, mutant transfectant 62 (Ak alpha 62 Gly----Ala) was able to present a natural variant virus A/TEX/77 to a T cell clone specific for HA1 48-67. We propose that Ak alpha 56 and Ak alpha 62 increase the affinity of association of mutant HA1 peptides for class II and therefore confer T cell recognition of variant viruses.  相似文献   

3.
To evaluate the potential functional role of the alpha- and beta-chain N-linked oligosaccharides we used site-directed mutagenesis to construct class II Ak alpha and Ak beta genes that encode polypeptides with altered N-linked oligosaccharide acceptor sites in the N-terminal domain of both polypeptides. The alpha 1 domain acceptor site at positions 82 to 84 was eliminated by substituting Gln for Asn at position 82. The beta 1 domain acceptor site at positions 19 to 21 was deleted by substituting Gln for Asn at position 19 or Ala for Thr at position 21. The mutant genes (Ak alpha* or Ak beta*) were transfected either individually (mutants T.19, T.21, and T.82) or together (mutant T.82-21) into class II cell surface negative B lymphoma cell lines. Quantitative immunofluorescence with a panel of Ak beta- or Ak alpha- reactive mAb demonstrated that although the oligosaccharide-deleted Ak alpha Ak beta molecules were serologically wild type, the Ad alpha serologic epitope defined by mAb K24-199 was eliminated in both the T.19 and T.21 Ak beta* Ad alpha molecules. Cloned cell lines expressing the T.19 or T.21 Ak beta* Ak alpha molecules exhibited limited functional Ag presentation defects. Cells expressing the T.82 Ak alpha* Ak beta molecules exhibited defects in Ag presentation function to nine of the ten T hybridomas tested. Surprisingly, cells expressing the mutant T.82-21 class II molecule stimulated a response that was equal to the wild-type response from three of the nine T hybrids and a response that was significantly greater than that of wild-type cells from five of nine T hybridomas. These functional and serological analyses also indicate that some of the observed Ag presentation defects may be due to altered secondary structure caused by either deletion of the oligosaccharide or the amino acid substitution used to delete the N-linked oligosaccharide acceptor site.  相似文献   

4.
Successive transfers of HLA-DR alpha and beta genes restored expression of HLA-DR antigens to human B-lymphoblastoid cell line, LCL .174, from which all known expressible class II genes are deleted. While transferent cells displayed large amounts of DR on their surfaces, transgene-encoded DR3 molecules lacked a conformation-dependent epitope. DR1-restricted CTL lysis of DR1-expressing transferents pulsed with native influenza virus proteins was greatly reduced; the same cells were efficiently lysed in the presence of CTL-recognized influenza peptides. The properties of DR-expressing transferents of .174 suggest they are defective in producing peptides from exogenous proteins or in forming DR/peptide complexes. Comparison with other DR-expressing deletion mutants indicates that at least one gene in an approximately 230 kb DNA segment between the DQ1 and Ring 7 loci is needed for normal DR-mediated processing and presentation. Production of DR3 molecules having the conformation-dependent 16.23 epitope and efficient DR1-restricted presentation of influenza viral epitopes occurred in a B cell line that has a mutation specifically eliminating expression of the TAP1 transporter gene, which is in the approximately 230 kb interval and is needed for production of HLA class I/peptide complexes.  相似文献   

5.
We have examined the role of 12 polymorphic residues of the beta-chain of the HLA-DR1 class II molecule in T cell recognition of an epitope of pertussis toxin. Murine L cell transfectants expressing wild-type or mutant DR1 molecules (containing single amino acid substitutions in DR(beta 1*0101)) were used as APC in proliferation assays involving nine DR1-restricted T cell clones specific for peptide 30-42 of pertussis toxin. Four different patterns of recognition of the mutants were found among the pertussis-specific clones. Residues in the third hypervariable region (HVR) of DR(beta 1*0101) are critically important for all the T cell clones; amino acid substitutions at positions 70 and 74 abrogated recognition by all of the T cell clones, and substitutions at positions 67 and 71 eliminated recognition by most of the clones. In contrast, most single amino acid substitutions in the first and second HVR, predicted to be located in the floor of the peptide binding groove, had little or no effect on the proliferative responses of these clones. However, the involvement of beta-chain first and second HVR residues was demonstrated by the inability of transfectants expressing wild-type DR(beta 1*0404) (DR4Dw14) or DR(beta 1*1402) (DR6Dw16) to present peptide to these clones. These beta-chains have completely different first and second HVR compared with DR(alpha,beta 1*0101) although the third HVR are identical. These results illustrate the functional importance of third HVR residues of DR(beta 1*0101) and allow definition of the molecular interactions of the DR1 molecule with the 30-42 peptide.  相似文献   

6.
We have transferred the mouse Ak alpha and Ak beta genes, which encode the class II I-Ak molecule, into mouse L-cell fibroblasts and hamster B cells. I-Ak molecules are expressed on the surface of both cell types. The L-cell and hamster B-cell I-Ak molecules appear normal by serological analyses and two-dimensional gel electrophoresis. Furthermore, the I-Ak molecules on L cells can act as targets for the allogenic T-cell killing of the transformed L cells. The I-Ak molecules in both mouse fibroblasts and hamster B cells can present certain antigens to T-cell helper hybridomas. Thus only class II molecules are required to convert the nonantigen-presenting cell. Accordingly, it will be possible to dissect the structure-function relationships existing between Ia molecules, foreign antigen, and T-cell receptor molecules by in vitro site-directed mutagenesis and gene transfer.  相似文献   

7.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

8.
9.
The Ag processing and structural requirements involved in the generation of a major T cell epitope from the hen egg-white lysozyme protein (HEL74-88), containing two cysteine residues at positions 76 and 80, were investigated. Several T cell hybridomas derived from both low responder (I-Ab) and high responder (I-Ak) mice recognize this region. These hybridomas are strongly responsive to native HEL, but unresponsive to the reduced and carboxymethylated protein. Air-oxidized HEL74-88 peptide was unable to bind I-Ak molecules and failed to stimulate T cells in the absence of intracellular Ag processing. Further functional competition assays showed that alkylation of cysteine residues with bulky methyl groups interferes with the contacts for the MHC class II molecules (I-Ak) of high responder mice and the I-Ab-restricted TCR of low responder mice. Serine substitutions of the cysteine residues of HEL74-88 either enhanced or abrogated T cell stimulation by the peptides without significant alterations in the class II binding. These results suggest that the cysteine residues of peptides must be free from disulfide bonding for efficient stimulation of T cells and yet frequently used modifications of cysteine residues may not be suitable for peptide-based vaccine development.  相似文献   

10.
Gamma irradiation followed by antibody and complement selection was used to isolate a human B-lymphoblastoid cell line that no longer expresses HLA-DR molecules on its cell surface. Cell surface expression in the mutant (HMy2.DRN) was restored by transfecting a wildtype DRA but not a DRB cDNA, suggesting that a structural mutation in the DRA mRNA or protein was responsible for the lack of cell surface expression. Nucleotide sequence analysis of the DRA mRNA from HMy2.DRN revealed a 75 nucleotide deletion corresponding to the start of the alpha 2 domain and involving one of two cysteines that are involved in the formation of an intrachain disulfide bond. At the biochemical level, only minute quantities of HLA-DR could be precipitated from this cell line after a 4-h continuous label with 35S-methionine. HLA-DR beta and the class II-associated invariant chain could be seen coprecipitating with the mutant DR alpha-chain, suggesting a limited accumulation of normally assembled molecules. However, by carrying out the labeling at 16 degrees C instead of 37 degrees C, equivalent amounts of HLA-DR could be precipitated from parent and mutant alike. The mutant DR alpha chain was found in association with the beta-chain, but with reduced association with the invariant chain under these conditions. Pulse chase analysis in the parent and mutant cell lines indicated that this mutant DR alpha beta I complex undergoes a process of degradation at 37 degrees C. Inhibitors of intracellular transport such as monensin were ineffective in blocking this process of degradation. This work is consistent with published reports implicating the involvement of a pre-Golgi or an early Golgi compartment in the proteolysis of aberrantly folded or assembled multisubunit proteins.  相似文献   

11.
Chemically induced mutants of an I-Ak,d-expressing, antigen-presenting B cell-B lymphoma hybridoma have recently been generated by immunoselection in vitro with I-Ak-specific monoclonal antibodies, and were found to possess alterations in some of the I-Ak region-dependent functions. The mutants were categorized as alpha-polypeptide mutants or beta-polypeptide mutants on the basis of the patterns of reactivity with anti I-Ak alpha and anti I-Ak beta monoclonal antibodies. To delineate the structural alterations underlying the differences in serologic and functional properties of these mutants, I-A molecules from several of these mutant hybridomas were compared biochemically with wild type I-Ak polypeptides by two-dimensional gel electrophoresis and high-pressure liquid chromatographic (HPLC) tryptic peptide analyses. These results suggest that the marked alterations in antibody reactivity and T cell-activating functions of the beta-polypeptide mutants G1, K2, and LD3, as well as the Ia alpha-polypeptide mutant JE50, may be due to very limited alterations in the Ia polypeptides. The functional deficiencies of the alpha-polypeptide mutant JE67 could be attributed to the change in net charge exhibited by its Ak alpha polypeptide. HPLC tryptic peptide analysis of I-A molecules isolated from the alpha-polypeptide mutant J4 indicates that the functional deficiencies exhibited by this mutant are due to a complete loss of expression of the Ak alpha polypeptide. The inability to detect significant amounts of Ad alpha Ak beta and Ak alpha Ad beta hybrid molecules in immunoprecipitates from some of these cell lines suggests that some hybrid molecules may be expressed at low levels due to preferential Ia polypeptide chain association. Together, these results indicate that most serologically defined epitopes are localized on either one or the other Ia polypeptide, whereas T cell-defined epitopes are determined by a combination of both Ia polypeptides. The results of these analyses also enable us to evaluate different immunoselection strategies for the most efficient production of mutants expressing limited alterations in Ia polypeptides.  相似文献   

12.
To investigate the locations of antibody binding epitopes on HLA class II molecules, four DR4/7 beta 1 hybrid cDNA were constructed by exchanging the DNA encoding the NH2-terminal portions (amino acids 1 to 40) or the COOH-terminal portions (amino acids 41 to 94) of the first domains of DR4 beta 1- and DR7 beta 1-chains, in association with DNA encoding either the DR4 beta 1 or DR7 beta 1 second domains. Transfectants expressing a DR alpha cDNA and a wild-type DR4 beta 1 or DR7 beta 1 cDNA or one of four hybrid DR4/7 beta 1 cDNA were produced, and the binding to the transfectants of anticlass II mAb, which detect polymorphic epitopes on either DR4 or DR7 molecules, was analyzed. Four different patterns of mAb binding to the transfectants were observed, indicating that multiple regions of DR beta 1-chains play the predominant roles in the contributions of these chains to polymorphic epitopes recognized by mAb on intact molecules. The relevant regions of these chains and the number of mAb that recognize the associated polymorphic epitopes are: 1) the COOH-terminal portion of the first domain of DR4 beta 1; a DR4-specific mAb, 2) the NH2-terminal portion of the first domain of DR7 beta 1; two mAb, including a DR7-specific mAb, 3) the NH2-terminal portion of the first domain of DR4 beta 1; seven mAb, and 4) the second domain of DR4 beta 1; one mAb.  相似文献   

13.
Antigen-presenting cells (APC) expressing mutant Ek beta and Ak alpha proteins were isolated after chemical mutagenesis of TA3 cells and negative immunoselection for altered Ek beta molecules. Mutant clones were analyzed for biosynthesis, assembly, and cell surface expression of altered Ia molecules, and were assayed for antigen-presenting function by using a variety of T cell clones. Three types of mutants were detected: type 1, which had lost expression of the Ek beta chain and produced altered Ak alpha chains; type 2, which also expressed altered Ak alpha chains, and which expressed Ek beta proteins that had lost reactivity to the 17.3.3 and 74D monoclonal antibodies (mAb), but retained reactivity to other anti-Ek beta mAb; and type 3, which had lost expression of both Ek beta and Ak beta: Ak alpha surface molecules. Thus, all of the mutant clones that produced modified Ak alpha proteins also displayed either total loss or serologic modification of the Ek beta molecule. Ek beta:E alpha-reactive T cell clones were not stimulated when type 1 or type 3 cells were used as APC, but all such T cells were fully reactive with type 2 mutant APC. Most Ak beta:Ak alpha-reactive T cell clones could respond to type 1 and 2 APC, and none were responsive to type 3 APC. However, two autoreactive Ak beta:Ak alpha-specific T cell hybridomas were stimulated only very weakly by type 1 and type 2 cells expressing modified Ak alpha proteins. These results demonstrate that Ia mutations can have highly selective effects on antigen presentation to T cells as well as on mAb binding, and thus suggest that individual Ia molecules may be composed of many different functional subsites.  相似文献   

14.
Three HLA class II DR beta genes and one DR alpha gene from the DR2 haplotype were cloned in cosmid vectors. The DR beta II gene might be a pseudogene lacking the first exon that encodes the leader peptide. The DR beta I and DR beta III genes were expressed, together with the DR alpha-chain, after transfection into mouse L cells. Restriction enzyme mapping of the DR beta genomic clones and reactivity of their products expressed on the L cell transfectant against mAb showed that the DR beta I and DR beta III genes encoded the nonpolymorphic and polymorphic DR beta chain, respectively. This arrangement is the reverse of that observed in other haplotypes, such as DR3, 4 and 6. The alignment of the HLA class II genes including the DR beta genes on the chromosome 6, however, was consistent with other haplotypes, e.g., centromere-DX beta-DX alpha-DV beta-DQ beta-DQ alpha-DR beta I-DR beta II- DR beta III-DR alpha-telomere. These results suggest that the susceptibility to mutations or gene conversions responsible for genetic polymorphisms depends on the gene itself and not on its location. Furthermore, absorption experiments of anti-DR2 allosera by the DR alpha/DR beta transfectants revealed that the so-called DR2 specificities were determined by multiple epitopes although both the DR beta I and DR beta III genes behaved similarly with DR2-specific antibodies.  相似文献   

15.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

16.
A segmental analysis of the key regions of HLA-DR1 that control T cell allorecognition was performed by using a series of transfected cell lines expressing the products of recombinant DRB/H-2Eb genes, paired with either DR alpha or H-2E alpha. Four of eight human T cell clones tolerated substitution of the H-2E alpha chain, but only one clone showed any response to the DR alpha/H-2E beta k dimer. Both the membrane-proximal and the membrane-distal domains of the beta-chain played an important part in stimulating these clones. The response of four of eight clones was markedly inhibited by substitution of the H-2E beta 2 for the DR beta 2 domain. This inhibition showed a complete correlation with the sensitivity of the clones to inhibition by anti-CD4 mAb. Taken together, these results suggest that the interaction site for CD4 may include residues on the beta 2-domain. Introduction of H-2Ek sequence into either half of the beta 1-domain led to a complete loss of response by all but two of the clones. This is consistent with these clones having dual specificity for exposed DR1-specific polymorphisms and for DR1-bound peptides. The pattern of response of one of the clones suggested that indirect conformational effects on the alpha 1-domain may also contribute to the influence of the amino-terminal half of the beta 1-domain on T cell recognition. In the presence of H-2E alpha, this clone responded more strongly when the amino-terminal half of the beta 1-domain was of H-2Ek rather than DR1 sequence. This implies that species matching of the floor of the beta 1-domain with the alpha-chain is more important than the presence of the alpha-chain of the parental species.  相似文献   

17.
The detection of dimers of dimers in MHC class II crystals has excited speculation about their possible functions in T cell Ag recognition. Biochemical evidence for the existence of DR superdimers falls short of proof and is controversial. To monitor B lymphoma cells for high m.w. complexes of HLA-DR molecules, membrane preparations and cell lysates were screened by one- and two-dimensional Western blotting. Under these conditions, in which DRalpha beta heterodimers were readily detected, no DR complexes with an (alpha beta)2-chain composition could be identified. Two mAbs (L243 and D1-12) immunoprecipitated high m.w. DR complexes suspected to be superdimers. However, biochemical analysis revealed that, rather than superdimers, these were SDS-stable complexes of DR in combination with the Abs. Thus, previous observations of HLA-DR superdimer bands may also reflect complexes of DR molecules with bound Ab.  相似文献   

18.
Recently human cartilage gp-39 (HC gp-39) was identified as a candidate autoantigen in rheumatoid arthritis (RA). To further investigate the relevance of this Ag in RA, we have generated a set of five mAbs to a combination epitope of complexes of HC gp-39(263-275) and the RA-associated DR alpha beta 1*0401 HLA class II molecules. FACS studies revealed that these mAb recognize specific complexes on homozygous DR alpha beta 1*0401-positive B lymphoblastoid cells pulsed with HC gp-39(263-275). The best mAb, 12A, was further characterized using a set of irrelevant DR alpha beta 1*0401-binding peptides and truncated/elongated versions of HC gp-39(263-275) itself. The minimal epitope recognized in combination with DR alpha beta 1*0401 was HC gp-39(263-273). Peptides not encompassing HC gp-39(263-273) were not recognized. Three of five mAb were able to inhibit (up to 90%) the response of HC gp-39(263-275)-specific DR alpha beta 1*0401-restricted T cell hybridomas to peptide-pulsed APC or purified complexes. Using mAb 12A, we have been able to identify and localize dendritic cells that present DR alpha beta 1*0401/HC gp-39(263-275) complexes in synovial tissue of DR alpha beta 1*0401-positive RA patients, indicating local presentation of the HC gp-39(263-275) epitope in the inflamed target tissue by professional APC. These data support a role of HC gp-39 in the local autoimmune response that leads to chronic inflammation and joint destruction.  相似文献   

19.
Class II major histocompatibility complex (MHC) molecules are cell surface glycoproteins that bind and present immunogenic peptides to T cells. Intracellularly, class II molecules associate with a polypeptide referred to as the invariant (Ii) chain. Ii is proteolytically degraded and dissociates from the class II complex prior to cell surface expression of the mature class II alpha beta heterodimer. Using human fibroblasts transfected with HLA-DR1 and Ii cDNAs, we now demonstrate that truncation of the cytoplasmic domain of Ii results in the failure of Ii to dissociate from the alpha beta Ii complex and leads to stable expression of class II alpha beta Ii complexes on the cell surface. Furthermore, biochemical analysis and peptide presentation assays demonstrated that transfectants with stable surface alpha beta Ii complexes expressed very few free alpha beta heterodimers at the surface and were very inefficient in their ability to present immunogenic peptides to T cells. These results support the hypothesis that the cytoplasmic domain of Ii is responsible for endosomal targeting of alpha beta Ii and directly demonstrate that association with Ii interferes with the antigen presentation function of class II molecules.  相似文献   

20.
We examined the structural characteristics of a peptide Ag that determine its ability to interact with class II-MHC molecules and TCR. The studies reported here focused on recognition of the hen egg white lysozyme (HEL) tryptic fragment HEL(34-45) by two I-Ak-restricted T cell hybridomas. HEL(34-45) bound to I-Ak created more than one antigenic specificity. Experiments with truncated peptides and alanine-substituted peptides indicated that two T cell hybrids either recognized distinct regions of the HEL(34-45) peptide, or different determinants generated by interaction of the peptide with I-Ak. Although we identified residues of HEL(34-45) that were critical to T cell recognition, no positions in the peptide were identified as I-Ak contact sites using single alanine substitutions. This suggests that more than one site or region of the peptide contributes to the binding to I-Ak. Finally, the murine lysozyme equivalent of 34-45 did not bind to I-Ak. Substitution of the corresponding murine lysozyme (self) residue at position 41 of HEL(34-45) abrogated I-Ak binding of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号