首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated that the octapeptide repeats of the N-terminal region of prion protein may be responsible for de novo generation of infectious prions in the absence of template. Here we demonstrate that PrP-(23-98), an N-terminal portion of PrP, is converted to aggregates upon incubation with NADPH and copper ions. Other pyridine nucleotides possessing a phosphate group on the adenine-linked ribose moiety (the reduced form of nicotinamide adenine dinucleotide 3'-phosphate, nicotinic acid adenine dinucleotide phosphate, and NADP) were also effective in promoting aggregation, but NADH and NAD had no effect. The aggregation was attenuated by the metal chelator EDTA or by modification of histidyl residues with diethyl pyrocarbonate. The aggregates are amyloid-like as judged by the binding of thioflavin T, a fluorescent probe for amyloid, but do not exhibit fibrillar structures according to electron micrography. Interestingly the aggregates were resistant to proteinase K digestion. Likewise NADPH and zinc ions caused aggregation of PrP-(23-98), but the resulting aggregates were susceptible to degradation by proteinase K. Upon incubation with NADPH and copper ions, the full-length molecule PrP-(23-231) also formed proteinase K-resistant amyloid-like aggregates. Because it is possible that PrP, NADPH, and copper ions could associate in certain tissues, the aggregation observed in this study may be involved in prion initiation especially in the nonfamilial types of prion diseases.  相似文献   

2.
In prion disease, direct interaction between the cellular prion protein (PrP(C)) and its misfolded disease-associated conformer PrP(Sc) is a crucial, although poorly understood step promoting the formation of nascent PrP(Sc) and prion infectivity. Recently, we hypothesized that three regions of PrP (corresponding to amino acid residues 23-33, 98-110, and 136-158) interacting specifically and robustly with PrP(Sc), likely represent peptidic components of one flank of the prion replicative interface. In this study, we created epitope-tagged mouse PrP(C) molecules in which the PrP sequences 23-33, 98-110, and 136-158 were modified. These novel PrP molecules were individually expressed in the prion-infected neuroblastoma cell line (ScN2a) and the conversion of each mutated mouse PrP(C) substrate to PrP(Sc) compared with that of the epitope-tagged wild-type mouse PrP(C). Mutations within PrP 98-110, substituting all 4 wild-type lysine residues with alanine residues, prevented conversion to PrP(Sc). Furthermore, when residues within PrP 136-140 were collectively scrambled, changed to alanines, or amino acids at positions 136, 137, and 139 individually replaced by alanine, conversion to PrP(Sc) was similarly halted. However, other PrP molecules containing mutations within regions 23-33 and 101-104 were able to readily convert to PrP(Sc). These results suggest that PrP sequence comprising residues 98-110 and 136-140 not only participates in the specific binding interaction between PrP(C) and PrP(Sc), but also in the process leading to conversion of PrP(Sc)-sequestered PrP(C) into its disease-associated form.  相似文献   

3.
Prion protein (PrP) binds copper and exhibits superoxide dismutase-like activity, while the roles of PrP in copper homeostasis remain controversial. Using Zeeman graphite furnace atomic absorption spectroscopy, we quantified copper levels in immortalized PrP gene (Prnp)-deficient neuronal cells transfected with Prnp and/or Prnd, which encodes PrP-like protein (PrPLP/Dpl), in the presence or absence of oxidative stress induced by serum deprivation. In the presence of serum, copper levels were not significantly affected by the expression of PrP and/or PrPLP/Dpl, whereas serum deprivation induced a decrease in copper levels that was inhibited by PrP but not by PrPLP/Dpl. The inhibitory effect of PrP on the decrease of copper levels was prevented by overexpression of PrPLP/Dpl. These findings indicate that PrP specifically stabilizes copper homeostasis, which is perturbed under oxidative conditions, while PrPLP/Dpl overexpression prevents PrP function in copper homeostasis, suggesting an interaction of PrP and PrPLP/Dpl and distinct functions between PrP and PrPLP/Dpl on metal homeostasis. Taken together, these results strongly suggest that PrP, in addition to its antioxidant properties, plays a role in stabilizing cellular copper homeostasis under oxidative conditions.  相似文献   

4.
The main proteins associated with Alzheimer's and prion diseases (amyloid precursor protein (APP) and prion protein (PrP(C)), respectively, have binding sites for copper and it has therefore been suggested that they play a role in copper metabolism. Here, we review evidence indicating that the copper binding domains (CuBD) of APP and PrP(C) are able to modulate the oxidation state of copper, and prevent neurotoxic effects and memory impairments induced by copper. Results with transgenic and other animal models have established the relation between these pathogenic proteins and copper. In particular, APP transgenic models, suggest a beneficial effect for copper in AD.  相似文献   

5.
Suramin induces misfolding of the cellular prion protein (PrP(C)) and interferes with the propagation of infectious scrapie prions. A mechanistic analysis of this effect revealed that suramin-induced misfolding occurs at the plasma membrane and is dependent on the proximal region of the C-terminal domain (aa 90-158) of PrP(C). The conformational transition induces rapid internalization, mediated by the unstructured N-terminal domain, and subsequent intracellular degradation of PrP(C). As a consequence, PrP Delta N adopts a misfolded conformation at the plasma membrane; however, internalization is significantly delayed. We also found that misfolding and intracellular retention of PrP(C) can be induced by copper and that, moreover, copper interferes with the propagation of the pathogenic prion protein (PrP(Sc)) in scrapie-infected N2a cells. Our study revealed a quality control pathway for aberrant PrP conformers present at the plasma membrane and identified distinct PrP domains involved.  相似文献   

6.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

7.
The prion protein (PrP) is the key protein implicated in transmissible spongiform encephalopathies. It is a metalloprotein that binds manganese and copper. The latter is involved in the physiological function of the protein. We have previously found that PrP expression in Pichia pastoris affects intracellular metal ion concentrations and that formation of protease-resistant PrP is induced by additional copper and/or manganese. In this study, we show that heterologously expressed PrP is post-translationally modified and transported to the cell wall. We found by combining three different test systems that PrP itself had gained superoxide dismutase-like activity in P. pastoris. However, this activity could not be inhibited by KCN and depended on additional copper in the medium. Thus, this study defines the conditions under which PrP exhibits superoxide dismutase-like activity by showing that copper must be present for the protein to participate in scavenging and detoxification of reactive oxygen species.  相似文献   

8.
Treiber C  Simons A  Multhaup G 《Biochemistry》2006,45(21):6674-6680
The prion protein (PrP) is the key protein implicated in diseases known as transmissible spongiform encephalopathies. PrP has been shown to bind manganese and copper, the latter being involved in the normal function of the protein. Indeed, upon expression in yeast we noted a major increase in intracellular copper and a decrease in manganese. Interestingly, protease-resistant PrP(Sc)-like protein (PrP(res)) formation was induced when PrP-expressing yeast cells were grown in copper- and/or manganese-supplemented media. The pattern of PrP banding in SDS-PAGE was dominantly determined by manganese. This conformational transition was stable against EDTA treatment but not in the presence of the copper chelators bathocuproinedisulfonic acid or clioquinol. Conclusively, PrP itself influences manganese and copper metabolism, and a replacement of copper in PrP complexes with manganese is highly likely under the condition of copper depletion or if excess amounts of copper and manganese are present. Taken together, our present study demonstrates the involvement of PrP in the regulation of intracellular metal ion homeostasis and uncovers copper and, more severely, manganese ions as in vivo risk factors for the conversion into PrP(Sc).  相似文献   

9.
Human prion protein fragments (PrP60-67 or PrP59-91) prevented and reversed the inhibition elicited by 5 micro m copper on the P2X4 receptor expressed in Xenopus laevis oocytes. A 60-s pre-application of 5 micro m copper caused a 69.2 +/- 2.6% inhibition of the 10 micro m adenosine triphosphate (ATP)-evoked currents, an effect that was prevented by mixing 5 micro m copper with 0.01-10 micro m of the PrP fragments 1-min prior to application. This interaction was selective, as PrP59-91 did not alter the facilitatory action of zinc. The EC50 of PrP60-67 and PrP59-91 for the reduction of the copper inhibition were 4.6 +/- 1 and 1.3 +/- 0.4 micro m, respectively. A synthetic PrP59-91 variant in which all four His were replaced by Ala was inactive. However, the replacement of Trp in each of the four putative copper-binding domains by Ala slightly decreased its potency. Furthermore, the application of 10 micro m PrP59-91 reversed the copper-evoked inhibition, restoring the ATP concentration curve to the same level as the non-inhibited state. Fragment 139-157 of betaA4 amyloid precursor protein also prevented the action of copper; its EC50 was 1.6 +/- 0.1 micro m; the metal chelator penicillamine was equipotent with PrP60-67, but carnosine was significantly less potent. Our findings highlight the role of PrP in copper homeostasis and hint at its possible role as a modulator of synapses regulated by this trace metal.  相似文献   

10.
Cytochrome c oxidases of prion protein (PrP) gene-deficient (Prnp(-/-)) and Prnp(+/+) mice were examined in vivo and in vitro. Non-invasive near-infrared spectra revealed that oxidation of copper and heme a+a(3) in cytochrome c oxidase of Prnp(-/-) mice was similar to that in Prnp(+/+) mice. Biochemical analysis of mitochondrial fractions also supported the results. PrP might not be involved in regulation of cytochrome c oxidase.  相似文献   

11.
Prion diseases are fatal transmissible neurodegenerative disorders linked to an aberrant conformation of the cellular prion protein (PrP(c)). We have shown previously that the chemical compound suramin induced aggregation of fully matured PrP(c) in post-ER compartments, thereby, activating a post-ER quality control mechanism and preventing cell surface localization of PrP by intracellular re-routing of aggregated PrP from the Golgi/TGN directly to lysosomes. Of note, drug-induced PrP aggregates were not toxic and could easily be degraded by neuronal cells. Here, we focused on determining the PrP domains mediating these effects. Using PrP deletion mutants we show that intracellular re-routing but not aggregation depends on the N-terminal PrP (aa 23-90) and, more precisely, on the preoctarepeat domain (aa 23-50). Fusion of the PrP N-terminus to the GPI-anchored protein Thy-1 did not cause aggregation or re-routing of the chimeric protein, indicating that the N-terminus is only active in re-routing when prion protein aggregation occurs. Insertion of a region with a comparable primary structure contained in the PrP paralogue prnd/doppel (aa 27-50) into N-terminally deleted PrP re-established the re-routing phenotype. Our data reveal an important role for the conserved preoctarepeat region of PrP, namely controlling the intracellular trafficking of misfolded PrP.  相似文献   

12.
Antioxidant activity related to copper binding of native prion protein   总被引:6,自引:0,他引:6  
We have developed a method to affinity-purify mouse prion protein (PrP(c)) from mouse brain and cultured cells. PrP(c) from mouse brain bound three copper atoms; PrP(c) from cultured cells bound between one and four copper atoms depending on the availability of copper in the culture medium. Purified PrP(c) exhibited antioxidant activity, as determined by spectrophotometric assay. Incubation of PrP(c) with the neurotoxic peptide, PrP106-126, inactivated the superoxide dismutase-like activity. Culture experiments showed that PrP(c) protects cells against oxidative stress relative to the amount of copper it binds. These results suggest that PrP(c) is a copper-binding protein which can incorporate varying amounts of copper and exhibit protective antioxidant activity.  相似文献   

13.
Direct interaction between endogenous cellular prion protein (PrP(C)) and misfolded, disease-associated (PrP(Sc)) conformers is a key event in prion propagation, which precedes templated conversion of PrP(C) into nascent PrP(Sc) and prion infectivity. Although almost none of the molecular details of this pivotal process are understood, the persistence of individual prion strains suggests that assembly of the prion replicative complex is mechanistically precise. To systematically map defined regions of PrP(C) sequence that bind tightly to PrP(Sc), we have generated a comprehensive panel of over 45 motif-grafted antibodies containing overlapping peptide grafts collectively spanning PrP residues 19-231. Grafted antibody binding experiments, performed under stringent conditions, clearly identified only three distinct and independent high affinity PrP(Sc) recognition motifs. The first of these binding motifs lies at the very N-terminal region of the mature PrP molecule within PrP-(23-33); the second motif lies within PrP-(98-110); and the third is contained within PrP-(136-158). Mutational analyses of these PrP(Sc)-binding regions revealed that reactivity of the 23-33 and 98-110 segments are largely dependent upon the presence of multiple positively charged amino acid residues. These studies yield new insight into critical peptidic components composing one side of the prion replicative interface.  相似文献   

14.
Recent evidence suggests that the prion protein (PrP) is a copper binding protein. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60-91. This region selectively binds Cu2+ in vivo. In a previous study using peptide design, EPR, and CD spectroscopy, we showed that the HGGGW segment within each octarepeat comprises the fundamental Cu2+ binding unit [Aronoff-Spencer et al. (2000) Biochemistry 40, 13760-13771]. Here we present the first atomic resolution view of the copper binding site within an octarepeat. The crystal structure of HGGGW in a complex with Cu2+ reveals equatorial coordination by the histidine imidazole, two deprotonated glycine amides, and a glycine carbonyl, along with an axial water bridging to the Trp indole. Companion S-band EPR, X-band ESEEM, and HYSCORE experiments performed on a library of 15N-labeled peptides indicate that the structure of the copper binding site in HGGGW and PHGGGWGQ in solution is consistent with that of the crystal structure. Moreover, EPR performed on PrP(23-28, 57-91) and an 15N-labeled analogue demonstrates that the identified structure is maintained in the full PrP octarepeat domain. It has been shown that copper stimulates PrP endocytosis. The identified Gly-Cu linkage is unstable below pH approximately 6.5 and thus suggests a pH-dependent molecular mechanism by which PrP detects Cu2+ in the extracellular matrix or releases PrP-bound Cu2+ within the endosome. The structure also reveals an unusual complementary interaction between copper-structured HGGGW units that may facilitate molecular recognition between prion proteins, thereby suggesting a mechanism for transmembrane signaling and perhaps conversion to the pathogenic form.  相似文献   

15.
The prion protein (PrP) binds divalent copper at physiologically relevant conditions and is believed to participate in copper regulation or act as a copper-dependent enzyme. Ongoing studies aim at determining the molecular features of the copper binding sites. The emerging consensus is that most copper binds in the octarepeat domain, which is composed of four or more copies of the fundamental sequence PHGGGWGQ. Previous work from our laboratory using PrP-derived peptides, in conjunction with EPR and X-ray crystallography, demonstrated that the HGGGW segment constitutes the fundamental binding unit in the octarepeat domain [Burns et al. (2002) Biochemistry 41, 3991-4001; Aronoff-Spencer et al. (2000) Biochemistry 39, 13760-13771]. Copper coordination arises from the His imidazole and sequential deprotonated glycine amides. In this present work, recombinant, full-length Syrian hamster PrP is investigated using EPR methodologies. Four copper ions are taken up in the octarepeat domain, which supports previous findings. However, quantification studies reveal a fifth binding site in the flexible region between the octarepeats and the PrP globular C-terminal domain. A series of PrP peptide constructs show that this site involves His96 in the PrP(92-96) segment GGGTH. Further examination by X-band EPR, S-band EPR, and electron spin-echo envelope spectroscopy, demonstrates coordination by the His96 imidazole and the glycine preceding the threonine. The copper affinity for this type of binding site is highly pH dependent, and EPR studies here show that recombinant PrP loses its affinity for copper below pH 6.0. These studies seem to provide a complete profile of the copper binding sites in PrP and support the hypothesis that PrP function is related to its ability to bind copper in a pH-dependent fashion.  相似文献   

16.
The PrP-like Doppel (Dpl) protein causes apoptotic death of cerebellar neurons in transgenic mice, a process prevented by expression of the wild type (wt) cellular prion protein, PrP(C). Internally deleted forms of PrP(C) resembling Dpl such as PrPDelta32-121 produce a similar PrP(C)-sensitive pro-apoptotic phenotype in transgenic mice. Here we demonstrate that these phenotypic attributes of wt Dpl, wt PrP(C), and PrPDelta132-121 can be accurately recapitulated by transfected mouse cerebellar granule cell cultures. This system was then explored by mutagenesis of the co-expressed prion proteins to reveal functional determinants. By this means, neuroprotective activity of wt PrP(C) was shown to be nullified by a deletion of the N-terminal charged region implicated in endocytosis and retrograde axonal transport (PrPDelta23-28), by deletion of all five octarepeats (PrPDelta51-90), or by glycine replacement of four octarepeat histidine residues required for selective binding of copper ions (Prnp"H/G"). In the case of Dpl, overlapping deletions defined a requirement for the gene interval encoding helices B and B' (DplDelta101-125). These data suggest contributions of copper binding and neuronal trafficking to wt PrP(C) function in vivo and place constraints upon current hypotheses to explain Dpl/PrP(C) antagonism by competitive ligand binding. Further implementation of this assay should provide a fuller understanding of the attributes and subcellular localizations required for activity of these enigmatic proteins.  相似文献   

17.
In recent studies, we developed a protocol for in vitro conversion of full-length mouse recombinant PrP (Mo rPrP23-230) into amyloid fibrils [Bocharova et al. (2005) J. Mol. Biol. 346, 645-659]. Because amyloid fibrils produced from recombinant Mo PrP89-230 display infectivity [Legname et al. (2004) Science 305, 673-676], polymerizatiom of rPrPs in vitro represents a valuable model for elucidating the mechanism of prion conversion. Unexpectedly, when the same conversion protocol was used for hamster (Ha) rPrP23-231, we experienced substantial difficulties in forming fibrils. While searching for potential reasons of our failure to produce fibrils, we probed the effect of methionine oxidation in rPrP. We found that oxidation of methionines interferes with the formation of rPrP fibrils and that this effect is more profound for Ha than for Mo rPrP. To minimize the level of spontaneous oxidation, we developed a new protocol for rPrP purification, in which highly amyloidogenic Ha rPrP with minimal levels of oxidized residues was produced. Furthermore, our studies revealed that oxidation of methionines in preformed fibrils inhibited subsequent maturation of fibrils into proteinase K-resistant PrP(Sc)-like conformation (PrP-res). Our data are consistent with the proposition that conformational changes within the central region of the protein (residues 90-140) are essential for adopting PrP-res conformation and demonstrate that methionine oxidation interferes with this process. These studies provide new insight into the mechanism of prion polymerization, solve a long-standing practical problem in producing PrP-res fibrils from full-length PrP, and may help in identifying new genetic and environmental factors that modulate prion disease.  相似文献   

18.
The intrinsically disordered amino-proximal domain of hamster prion protein (PrP) contains four copies of a highly conserved octapeptide sequence, PHGGGWGQ, that is flanked by two polycationic residue clusters. This N-terminal domain mediates the binding of sulfated glycans, which can profoundly influence the conversion of PrP to pathological forms and the progression of prion disease. To investigate the structural consequences of sulfated glycan binding, we performed multidimensional heteronuclear (1H, 13C, 15N) NMR (nuclear magnetic resonance), circular dichroism (CD), and fluorescence studies on hamster PrP residues 23-106 (PrP 23-106) and fragments thereof when bound to pentosan polysulfate (PPS). While the majority of PrP 23-106 remain disordered upon PPS binding, the octarepeat region adopts a repeating loop-turn structure that we have determined by NMR. The β-like turns within the repeats are corroborated by CD data demonstrating that these turns are also present, although less pronounced, without PPS. Binding to PPS exposes a hydrophobic surface composed of aligned tryptophan side chains, the spacing and orientation of which are consistent with a self-association or ligand binding site. The unique tryptophan motif was probed by intrinsic tryptophan fluorescence, which displayed enhanced fluorescence of PrP 23-106 when bound to PPS, consistent with the alignment of tryptophan side chains. Chemical-shift mapping identified binding sites on PrP 23-106 for PPS, which include the octarepeat histidine and an N-terminal basic cluster previously linked to sulfated glycan binding. These data may in part explain how sulfated glycans modulate PrP conformational conversions and oligomerizations.  相似文献   

19.
Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.  相似文献   

20.
The conversion of cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)) conveys an increase in hydrophobicity and induces a partial resistance to proteinase K (PK). Interestingly, co-incubation with high copper ion concentrations also modifies the solubility of PrP(c) and induces a partial PK resistance which was reminiscent of PrP(Sc). However, concerns were raised whether this effect was not due to a copper-induced inhibition of the PK itself. We have therefore analyzed the kinetics of the formation of PK-resistant PrP(C) and excluded possible interference effects by removing unbound copper ions prior to the addition of PK by methanol precipitation or immobilization of PrP(C) followed by washing steps. We found that preincubation of PrPc with copper ions at concentrations as low as 50 microM indeed rendered these proteins completely PK resistant, while control substrates were proteolyzed. No other divalent cations induced a similar effect. However, in addition to this specific stabilizing effect on PrP(C), higher copper ion concentrations in solution (>200 microM) directly blocked the enzymatic activity of PK, possibly by replacing the Ca2+ ions in the active center of the enzyme. Therefore, as a result of this inhibition the proteolytic degradation of PrP(C) as well as PrP(Sc) molecules was suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号