首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior incubation of confluent, quiescent cultures of Swiss 3T3 cells with insulin leads to a selective loss of mitogenic stimulation on re-addition of the combination of vasopressin and insulin in serum-free medium. The desensitization is specific for the action of vasopressin as insulin is fully active in the refractory cells when added in combination with other mitogens, whereas vasopressin is not. A prolonged treatment with insulin is required for induction of the refractoriness, half-maximal loss of response occurs after about 7 h and desensitization is complete after 12 h treatment. The refractory cells recover their response to vasopressin after more than 24 h incubation in the absence of insulin. A rapid response of the cells to vasopressin, inhibition of 125I-epidermal growth factor (125I-EGF) binding, is also desensitized by insulin. Desensitization is induced by insulin-like growth factor I (IGF-I), and partially by desoctapeptide insulin, but not by insulin B chain. Although the characteristics of insulin-induced desensitization are very similar to those of the homologous desensitization induced by vasopressin treatment, insulin does not bind to vasopressin antiserum or the [3H]vasopressin receptors of Swiss 3T3 cells. Insulin treatment also does not lead to any down-regulation of [3H]vasopressin receptors, and the refractoriness of the cells must therefore lie at a post-receptor step. Both insulin- and vasopressin-induced refractoriness to the mitogenic action of vasopressin can be blocked by a low level of cycloheximide. Both these agents therefore seem to induce the synthesis of specific protein(s) which selectively inhibit the mitogenic response of the cell to vasopressin.  相似文献   

2.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331–336) and this heterologous β-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous β-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   

3.
Prolonged exposure of Swiss 3T3 cells to vasopressin causes heterologous mitogenic desensitization to bombesin and structurally related peptides including gastrin-releasing peptide (GRP) without down-regulation of the bombesin receptor. The number and affinity of bombesin/GRP receptor sites and modulation of 125I-GRP binding by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) are unaffected in membrane preparations from vasopressin-treated cultures. Stimulation of inositol phosphate accumulation, mobilization of intracellular calcium, production of diacylglycerol, and transmodulation of the epidermal growth factor receptor by bombesin are similarly unaffected. Thus, the heterologous mitogenic desensitization is not due to uncoupling of bombesin receptor from transducing G protein(s) or to an inability to activate phospholipase C. Bombesin, unlike vasopressin, causes a rapid dose-dependent release of [3H]arachidonic acid and prostaglandin E2 from Swiss 3T3 cells (EC50 approximately 4 nM), which is inhibited by the specific bombesin receptor antagonist [Leu13-psi(CH2NH)-Leu14]bombesin. Crucially, release of [3H]arachidonic acid and prostaglandin E2 by bombesin is completely suppressed by prolonged pretreatment with vasopressin (EC50 = 0.6 nM). The mitogenic action of bombesin is restored by adding arachidonic acid to vasopressin-treated cells. We conclude first that arachidonic acid release is an early signal in the mitogenic response to bombesin and second that pretreatment with vasopressin induces heterologous mitogenic desensitization to bombesin by a novel mechanism: inhibition of arachidonic acid release.  相似文献   

4.
Prolonged exposure (40 h) of Swiss 3T3 cells to bombesin induced homologous desensitization to bombesin and structurally related peptides including mammalian gastrin releasing peptide (GRP). The ability of bombesin to mobilize intracellular Ca2+, inhibit epidermal growth factor binding, and stimulate DNA synthesis was profoundly and selectively inhibited. In contrast, Ca2+ mobilization by either vasopressin or bradykinin was unaffected, indicating that chronic desensitization is mechanistically distinct from acute desensitization of Ca2+ mobilization. Prolonged (24 or 40 h) pretreatment with bombesin also induced a 78 +/- 5% loss of bombesin receptor binding sites in both intact and plasma membrane preparations of Swiss 3T3 cells without an apparent change in receptor affinity (Kd = 1.9 +/- 0.1 x 10(-9) M and Kd = 1.8 +/- 0.2 x 10(-9) M for control and pretreated cells, respectively). Loss of 125I-GRP binding was slow and progressive with half-maximal loss of binding occurring after 7 h and maximal after approximately 14 h. Cross-linking of 125I-GRP to intact cultures and membrane preparations revealed an identical time-dependent loss of the Mr = 75,000-85,000 cross-linked band, previously identified as the bombesin receptor. Prolonged exposure of the cells to phorbol 12,13-dibutyrate, epidermal growth factor, cholera toxin, or mitogenic combinations of these agents did not alter 125I-GRP binding. Receptor down-regulation and loss of mitogenic responsiveness to bombesin were: (a) induced in a parallel dose-dependent manner by bombesin (ED50 = 1 nM), GRP (ED50 = 2 nM), and neuromedin B (ED50 = 20 nM), but not by the biologically inactive fragment GRP (1-16); (b) inhibited by the specific bombesin antagonist [Leu13-psi(CH2NH)-Leu14] bombesin, and (c) reversed upon removal of bombesin with a similar time course (full recovery after 15 h). On the basis of these observations, we propose that prolonged pretreatment of Swiss 3T3 cells with bombesin induces homologous desensitization to peptides of the bombesin family by down-regulation of cell surface bombesin receptors.  相似文献   

5.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331-336) and this heterologous beta-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous beta-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   

6.
Vasoactive intestinal contractor peptide (VIC), a novel member of the endothelin family, stimulated a rapid increase in the intracellular Ca2+ concentration in fura-2-loaded Swiss 3T3 cells. Sequential addition of VIC and endothelin-1 (ET1) demonstrated the induction of both homologous and heterologous desensitization. VIC was as potent as ET1 in displacing the binding of 125I-ET1 and in stimulating mitogenesis in Swiss 3T3 cells. These findings suggest that VIC and ET1 share a common receptor in Swiss 3T3 cells.  相似文献   

7.
Prolonged treatment of quiescent Swiss 3T3 cells with vasopressin induced heterologous desensitization of specific early signals stimulated by platelet-derived growth factor (PDGF). PDGF caused a striking dose-dependent release of [3H]arachidonic acid (EC50 = 2 ng/ml) and prostaglandin E2 (EC50 = 5 ng/ml). These responses are severely attenuated (greater than 85%) by prior exposure to vasopressin in a dose-dependent manner (IC50 = 1.5 nM). Maximal loss of responsiveness occurred after 40 h of vasopressin treatment with a half-maximal desensitization after 11-13 h. The desensitization is dependent upon binding to the V1 receptor, since it can be prevented by the antagonist [Pmp1,O-Me-Tyr2,Arg8]vasopressin. In contrast, stimulation of inositol phosphate accumulation and production of diacylglycerol and phosphatidic acid by PDGF are unchanged. Thus, the observed heterologous desensitization cannot be attributed to an inability to activate phospholipase C. Furthermore, prior exposure to vasopressin did not affect the ability of PDGF to evoke tyrosine phosphorylation of cellular substrates, demonstrating that vasopressin-induced heterologous desensitization causes a block at a point distal to activation of receptor tyrosine kinase activity. Other downstream responses including transient induction of c-fos expression and stimulation of DNA synthesis were attenuated by vasopressin pretreatment. The findings demonstrate a novel mechanism of heterologous cellular desensitization namely, persistent occupancy of a guanine nucleotide-binding protein-coupled receptor, like the V1 type vasopressin receptor, attenuates responsiveness to a polypeptide growth factor like PDGF that initiates responses through a tyrosine kinase receptor.  相似文献   

8.
Epidermal growth factor (EGF) stimulates the growth of both benzo[a]pyrene-transformed Balb 3T3 cells (BP3T3) and untransformed Balb 3T3 cells. We describe here the binding, internalization, and degradation of [125I]-EGF by BP3T3 cells and 3T3 cells. Binding of [125I]-EGF reaches a maximum after 45 to 90 minutes incubation at 37 degrees C. In both BP3T3 and 3T3 cells the extent of EGF binding required to stimulate DNA synthesis is density dependent; sparse cultures require a 15-30% occupancy to elicit a maximal response whereas dense cultures require a 70-85% occupancy. At physiological concentrations the total binding of [125I]-EGF to 3T3 cells is higher than to BP3T3 cells, and this difference increases at higher cell densities. The rate of degradation of [125I]-EGF is directly proportional to the total [125I]-EGF binding in each cell type. This supports the hypothesis that one cause of the diminished serum requirement of BP3T3 cells is a reduced rate of utilization of serum growth factors.  相似文献   

9.
The growth stimulating-/cholecystokinin (CCK) releasing-peptide (monitor peptide) is a peptide purified from rat bile-pancreatic juice on the basis of its stimulatory activity toward pancreatic enzyme secretion. Its multiple functions and peptide sequence suggested that it is distinct from epidermal growth factor (EGF). However, we found that the peptide competes with [125I]-EGF in the binding to Swiss 3T3 fibroblast cells to almost the same extent as unlabeled EGF does. [125I]-EGF binding was inhibited by 50% by the peptide at 82.8 ng/ml and by unlabeled EGF at 71.4 ng/ml. This suggests that the growth stimulating effect of the peptide on 3T3 fibroblasts is mediated via the EGF receptor, and also suggests that the partial homologous sequence between monitor peptide and EGF is required for the receptor binding, or that the EGF receptor has a broad ligand specificity.  相似文献   

10.
Neuropeptide-stimulated tyrosine phosphorylation of specific components in Swiss 3T3 cells was investigated using monoclonal antibodies directed against the src transformation-associated substrates p125 focal adhesion kinase (FAK), a novel type of cytosolic tyrosine kinase, and p130. Treatment of Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, and endothelin caused a striking increase in the tyrosine phosphorylation of p125FAK, as judged either by anti-phosphotyrosine (anti-Tyr(P)) Western blots of anti-p125FAK immunoprecipitates, or by anti-p125FAK immunoblots of anti-Tyr(P) immunoprecipitates. Bombesin-stimulated tyrosine phosphorylation of p125FAK was detectable within seconds and concentration-dependent (half-maximum effect of 0.3 nM). Neuropeptides also stimulated the tyrosine phosphorylation of a second component of M(r) 130,000, previously identified as the major p130 phosphotyrosyl protein in src-transformed cells. Bombesin stimulated p130 tyrosine phosphorylation with kinetics and concentration dependence similar to those observed for p125FAK. This is the first report to identify substrates for neuropeptide-stimulated tyrosine phosphorylation; the finding that one of these substrates is a tyrosine kinase suggests the existence of a novel signal transduction pathway in the action of mitogenic neuropeptides.  相似文献   

11.
The synthetic diacylglycerol 1-oleoyl-2-acetyl glycerol (OAG) and phorbol esters activate protein kinase C in intact cells. We report here that OAG inhibits the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The inhibition was detected as early as 1 min after treatment at 37 degrees C and persisted for at least 120 min. The effect of OAG was reversed upon removal of this diacylglycerol. Detailed Scatchard analysis of 125I-EGF binding to Swiss 3T3 cells at 4 degrees C after a 1 h incubation with a saturating dose of OAG at 37 degrees C, demonstrates that this OAG pretreatment does not change the apparent number of EGF receptors but causes a marked decrease in their apparent affinity for the ligand. Prolonged treatment (40 h) of the cells with phorbol dibutyrate (PBt2) which causes a marked decrease in the number of phorbol ester binding sites and in the activity of protein kinase C, prevented the inhibition of 125I-EGF binding by both PBt2 and OAG. The results support the possibility that protein kinase C plays a role in the transmodulation of the EGF receptor in intact cells.  相似文献   

12.
Abstract: Desensitization or habituation to repeated or prolonged stimulation is a common property of secretory cells. Phosphorylation of receptors mediates some desensitization processes, but the relationship of phosphorylation to desensitization at postreceptor sites is not well understood. We have tested the effect of protein phosphorylation on desensitization in bovine chromaffin cells. To increase protein phosphorylation, we have used the protein phosphatase inhibitor okadaic acid at 12.5 nM, 100 pA4 8-bromo-cyclic AMP to activate protein kinase A, and 10 nM phorbol 12,13-dibutyrate to activate protein kinase C . During repeated 6-s stimulation at 5-min intervals, catecholamine secretion from control cells decreases. Cells exposed to 8-bromo-cyclic AMP or okadaic acid alone show slightly decreased rates of desensitization. In cells pretreated with phorbol 12,13-dibutyrate, desensitization is blocked. Okadaic acid-treated cells stimulated in the presence of 8-bromo-cyclic AMP show potentiation of secretion with repeated stimulation. The protein kinase inhibitor 1 -(5-iso-quinolinylsulfonyl)-2-methylpiperazine (H7) increases the desensitization rate. Because these phenomena are observed during secretion evoked with elevated Kf as well as by a nicotinic agonist, the effect of phosphorylation is at a postreceptor site. In contrast to desensitization to the repeated stimulations, desensitization to prolonged stimulation with high K+ is not altered by the above protocols in chromaffin Cells.  相似文献   

13.
The results presented here demonstrate that bradykinin, acting through a B2 subtype receptor, induces a unique pattern of early signals in quiescent Swiss 3T3 cells. Bradykinin caused a rapid mobilization of calcium from internal stores, as judged by measurements of intracellular Ca2+ concentration in fura-2-loaded cells and by 45Ca2+ efflux from radiolabeled cells. Analysis of phosphoproteins from 32P-labeled Swiss 3T3 cells by one- and two-dimensional gel electrophoresis revealed that bradykinin stimulated transient phosphorylation of an acidic cellular protein migrating with an apparent Mr = 80,000 (termed 80K), identified as a major and specific substrate of protein kinase C. Down-regulation of protein kinase C by pretreatment with phorbol 12,13-dibutyrate (PDBu) completely abolished the increase in 80K phosphorylation. In contrast to the sustained effect induced by bombesin, vasopressin, or PDBu, the stimulation of 80K phosphorylation by bradykinin reached a maximum after 1 min of incubation, and then it rapidly decreased to almost basal levels. Furthermore, bradykinin did not induce protein kinase C-mediated events such as inhibition of 125I-epidermal growth factor binding or enhancement of cAMP accumulation. Bombesin and vasopressin elicited both responses in parallel cultures. Bradykinin induced rapid accumulation of total inositol phosphates in cells labeled with myo-[3H]inositol. In contrast to bombesin and vasopressin which stimulated a linear increase in inositol phosphate accumulation over a 10-min period, the effect of bradykinin reached a plateau after 2.5 min of incubation with no further increase up to 10 min. The results demonstrate that the early signaling events triggered by bradykinin can be distinguished from those elicited by bombesin and vasopressin in Swiss 3T3 cells.  相似文献   

14.
The level of occupancy of a single class of high-affinity (3H)-phorbol 12, 13-dibutyrate (PDBu) binding sites (Kd = 26 nM) in quiescent Swiss 3T3 cells was correlated with the dose of PDBu required to stimulate rapid (increase in 86Rb uptake, decrease in epidermal growth factor receptor affinity) and long-term (induction of 2-deoxyglucose uptake, initiation of DNA synthesis) events of the proliferative response. Further, structural analogues of PDBu showed identical relative potencies in the inhibition of (3H)-PDBu binding and stimulation of DNA synthesis. Finally, prolonged (24-hour) incubation of Swiss 3T3 or whole mouse embryo fibroblasts with 400 nM PDBu led to a decrease in the number of (3H)-PDBu binding sites (down-regulation) with a parallel loss of rapid and long-term responses of the cells to PDBu (desensitization). These findings indicate that the high-affinity (3H)-PDBu binding sites mediate the mitogenic effects of phorbol esters in fibroblastic cells.  相似文献   

15.
The vasopressin V1a receptor undergoes homologous and heterologous desensitizations which can be mimicked by activation of protein kinase C. This suggests that phosphorylation of the V1a receptor may be involved in the desensitization mechanisms. Such a phosphorylation was presently investigated in HEK 293 cells stably transfected with rat vasopressin V1a receptor. Metabolic labelling and immunoprecipitation of epitope-tagged V1a receptor evidenced a 52-kDa band and a 92-kDa band. Glycosidase treatments and immunoblotting experiments suggest that the 52-kDa band corresponds to an immature unprocessed receptor protein, whereas the 92-kDa band would correspond to a highly glycosylated form of the mature V1a receptor. Exposure of the cells to vasopressin induced a selective 32P phosphate incorporation in the 92-kDa form of the receptor. This homologous ligand-induced phosphorylation was dose dependent with maximal phosphate incorporation corresponding to four times the basal level. Stimulation of the endogenous phospholipase C-coupled m3 muscarinic receptor by carbachol-induced heterologous phosphorylation of the V1a receptor whose amplitude was half that of the homologous phosphorylation. This heterologous phosphorylation was associated with a reduced vasopressin-dependent increase in intracellular calcium.  相似文献   

16.
The mitogens phorbol 12,13-dibutyrate, bombesin and vasopressin stimulate the phosphorylation of an acidic Mr 80,000 cellular protein, a specific substrate of protein kinase C, in intact Swiss 3T3 cells. Phosphorylation of this substrate was rapidly reversed upon the removal of each of these agents. Dephosphorylation occurred with a similar half-life in each of the cases studied (2.2, 1.5 and 2 minutes for phorbol 12,13-dibutyrate, bombesin and vasopressin respectively) and agreed closely with the dissociation of the ligands from their specific high-affinity binding sites in Swiss 3T3 cells.  相似文献   

17.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

18.
Treatment of quiescent Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, endothelin/vasoactive intestinal contractor (VIC), and bradykinin strikingly increased the initial rate of tyrosine phosphorylation measured in anti-phosphotyrosine immunoprecipitates of a major band of Mr 115,000 (p115) and two minor components of Mr 90,000 and 75,000. Neuropeptides increased the labeling of p115 within seconds and with great potency; half-maximum concentrations were 0.1, 0.2 and 0.3 nM for bombesin, vasopressin, and VIC, respectively. Immunoblotting and peptide mapping showed that the p115 band phosphorylated in anti-phosphotyrosine immunoprecipitates is identical to a major Mr 115,000 substrate for neuropeptide-stimulated tyrosine phosphorylation in intact Swiss 3T3 cells. Furthermore, bombesin, vasopressin, and VIC markedly increased the rate of phosphorylation of Raytide, a broad specificity tyrosine kinase peptide substrate, by decreasing (8 +/- 1.3-fold) the apparent Km of the kinase for the substrate. Phorbol 12,13-dibutyrate and the Ca2+ ionophore A23187 had a weaker effect on tyrosine protein kinase activity in immune complexes compared with bombesin. Furthermore, down-regulation of protein kinase C blocked the small effect of phorbol esters but did not impair bombesin-stimulated tyrosine kinase activity. These results provide direct evidence for neuropeptide activation of a tyrosine kinase in cell-free preparations and identify a novel event in the action of this class of growth factors in Swiss 3T3 cells.  相似文献   

19.
We examined whether protein kinase D (PKD) overexpression in Swiss 3T3 cells potentiates the proliferative response to either the G protein-coupled receptor agonists bombesin and vasopressin or the biologically active phorbol ester phorbol 12,13-dibutyrate (PDBu). In order to generate Swiss 3T3 cells stably overexpressing PKD, cultures of these cells were infected with retrovirus encoding murine PKD and green fluorescent protein (GFP) expressed as two separate proteins translated from the same mRNA. GFP was used as a marker for selection of PKD-positive cells. PKD overexpressed in Swiss 3T3 cells was dramatically activated by cell treatment with bombesin or PDBu as judged by in vitro kinase autophosphorylation assays and exogenous substrate phosphorylation. Concomitantly, these stimuli induced PKD phosphorylation at Ser(744), Ser(748), and Ser(916). PKD activation and phosphorylation were prevented by exposure of the cells to protein kinase C-specific inhibitors. Addition of bombesin, vasopressin, or PDBu to cultures of Swiss 3T3 cells overexpressing PKD induced a striking increase in DNA synthesis and cell number compared with cultures of Swiss 3T3-GFP cells. In contrast, stimulation of DNA synthesis in response to epidermal growth factor, which acts via protein kinase C/PKD-independent pathways, was not enhanced. Our results demonstrate that overexpression of PKD selectively potentiates mitogenesis induced by bombesin, vasopressin, or PDBu in Swiss 3T3 cells.  相似文献   

20.
Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an Mr 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent; enhancement in 80k phosphorylation could be detected as early as 10 s after the addition of peptide. Recently, a rapid increase in the phosphorylation of an 80k cellular protein after treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact fibroblasts (Rozengurt, E., A. Rodriguez-Pena, and K. A. Smith, 1983, Proc. Natl. Acad. Sci. USA., 80:7244-7248; Rozengurt, E., A. Rodriguez-Pena, M. Coombs, and J. Sinnett-Smith, 1984, Proc. Natl. Acad. Sci. USA., 81:5748-5752). The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125I-labeled epidermal growth factor (125I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. Peptides structurally related to bombesin, including gastrin-releasing peptide, also stimulated 80k phosphorylation and inhibited 125I-EGF binding; both effects were selectively blocked by a novel bombesin antagonist. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca2+ concentration does not mediate the bombesin inhibition of 125I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125I-EGF to its cellular receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号