首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for engulfment and anastomosis of the myxamoebae of several members of the Acrasiales is presented. Photomicrographic evidence for engulfment and anastomosis indicates that these processes are unrelated to any regular sexual mechanism. Vacuolar activity was found to be associated with plasma membrane properties in both anastomosis and engulfment. Frequent multiple engulfment, progressive destruction and digestion of the ingested cells, and ultimate egestion of both intact and partially digested engulfed cells are interpreted as evidence favoring the view that engulfment is a cannibalistic activity. Binucleate and multinucleate amoebae were produced by cell fusion; however, no supporting evidence for nuclear fusion was obtained from observations of either anastomosis or engulfment. It is concluded that no regular sexuality occurs in the usual life cycle of the Acrasiales.  相似文献   

2.
To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in 60 of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes.  相似文献   

3.
Despite being of vital importance to the immune system, the mechanism by which cells engulf relatively large solid particles during phagocytosis is still poorly understood. From movies of neutrophil phagocytosis of polystyrene beads, we measure the fractional engulfment as a function of time and demonstrate that phagocytosis occurs in two distinct stages. During the first stage, engulfment is relatively slow and progressively slows down as phagocytosis proceeds. However, at approximately half-engulfment, the rate of engulfment increases dramatically, with complete engulfment attained soon afterwards. By studying simple mathematical models of phagocytosis, we suggest that the first stage is due to a passive mechanism, determined by receptor diffusion and capture, whereas the second stage is more actively controlled, perhaps with receptors being driven toward the site of engulfment. We then consider a more advanced model that includes signaling and captures both stages of engulfment. This model predicts that there is an optimum ligand density for quick engulfment. Further, we show how this model explains why nonspherical particles engulf quickest when presented tip-first. Our findings suggest that active regulation may be a later evolutionary innovation, allowing fast and robust engulfment even for large particles.  相似文献   

4.
Despite being of vital importance to the immune system, the mechanism by which cells engulf relatively large solid particles during phagocytosis is still poorly understood. From movies of neutrophil phagocytosis of polystyrene beads, we measure the fractional engulfment as a function of time and demonstrate that phagocytosis occurs in two distinct stages. During the first stage, engulfment is relatively slow and progressively slows down as phagocytosis proceeds. However, at approximately half-engulfment, the rate of engulfment increases dramatically, with complete engulfment attained soon afterwards. By studying simple mathematical models of phagocytosis, we suggest that the first stage is due to a passive mechanism, determined by receptor diffusion and capture, whereas the second stage is more actively controlled, perhaps with receptors being driven toward the site of engulfment. We then consider a more advanced model that includes signaling and captures both stages of engulfment. This model predicts that there is an optimum ligand density for quick engulfment. Further, we show how this model explains why nonspherical particles engulf quickest when presented tip-first. Our findings suggest that active regulation may be a later evolutionary innovation, allowing fast and robust engulfment even for large particles.  相似文献   

5.
6.
Broder DH  Pogliano K 《Cell》2006,126(5):917-928
A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the enzymatic removal of peptidoglycan, a process that does not require DMP. These results suggest the existence of two separate engulfment machineries that compensate for one another in intact cells, thereby rendering engulfment robust. Photobleaching analysis demonstrates that SpoIIQ assembles a stationary structure, suggesting that SpoIIQ and SpoIIIAH function as a ratchet that renders forward membrane movement irreversible. We suggest that ratchet-mediated engulfment minimizes the utilization of chemical energy during this dramatic cellular reorganization, which occurs during starvation.  相似文献   

7.
During the development of the peripheral nervous system, the large number of apoptotic neurons generated are phagocytosed by glial precursor cells. This clearance is mediated, in part, through the mammalian engulfment receptor Jedi-1. However, the mechanisms by which Jedi-1 mediates phagocytosis are poorly understood. Here we demonstrate that Jedi-1 associates with GULP, the mammalian homologue of CED-6, an adaptor protein required for phagocytosis mediated by the nematode engulfment receptor CED-1. Silencing GULP or mutating the NPXY motif in Jedi-1, which is required for GULP binding, prevents Jedi-1–mediated phagocytosis. How GULP promotes engulfment is not known. Of interest, we find that Jedi-1–induced phagocytosis requires GULP binding to clathrin heavy chain (CHC). During engulfment, CHC is tyrosine phosphorylated, which is required for Jedi-mediated engulfment. Both phosphoclathrin and actin accumulate around engulfed microspheres. Furthermore, knockdown of CHC in HeLa cells prevents Jedi-1–mediated engulfment of microspheres, and knockdown in glial precursors prevents the engulfment of apoptotic neurons. Taken together, these results reveal that Jedi-1 signals through recruitment of GULP, which promotes phagocytosis through a noncanonical phosphoclathrin-dependent mechanism.  相似文献   

8.
During sporulation in Bacillus subtilis, the mother cell membranes migrate around the forespore in a phagocytic-like process called engulfment. Developmental gene expression requires the successful completion of this key morphological event. Here we show that perturbations to engulfment block the accumulation of proteins secreted into the space between the mother cell and forespore membranes. Our data support a model in which engulfment defects cause the proteolytic clearance of these secreted proteins. Importantly, we show that this degradative response is reversible; once proper engulfment is restored, secreted proteins again accumulate. In particular, we have found that the forespore signalling protein SpoIVB fails to accumulate when engulfment is impaired and, as a result, late mother cell gene expression under the control of sigma(K) is blocked. If engulfment is restored, SpoIVB accumulates and cell-cell signalling resumes. Thus, this degradative pathway functions like a developmental checkpoint ensuring that mother cell gene expression does not commence unless morphogenesis proceeds normally.  相似文献   

9.
The efficient engulfment of apoptotic cells by professional or nonprofessional phagocytes is critical to maintain mammalian homeostasis. To identify molecules involved in the engulfment of apoptotic cells, we established a retrovirus-based expression cloning system coupled with the engulfment assay. By screening a cDNA library of a mouse macrophage cell line, we identified two small GTPase family members (RhoG and Rab5) that enhanced the engulfment of apoptotic cells. By examining other small GTPase family members, we found that Rac1 enhanced the engulfment of apoptotic cells, whereas RhoA inhibited the process. Accordingly, the expression of a dominant-negative form of RhoG or Rac1 in primary macrophage cultures severely reduced the ability of the macrophages to engulf apoptotic cells, and a dominant-negative form of RhoA enhanced the process. These results indicated that the efficient engulfment of apoptotic cells requires the concerted action of small GTPase family members. We demonstrated previously that NIH3T3 cells expressing the alphav beta3 integrin efficiently engulf apoptotic cells in the presence of milk fat globule epidermal growth factor 8 via a phosphatidylserine-dependent mechanism. The dominant-negative form of RhoG or Rac1 inhibited this process, which suggested RhoG and Rac1 are also involved in the integrin-mediated engulfment.  相似文献   

10.
During Bacillus subtilis sporulation, an endocytic‐like process called engulfment results in one cell being entirely encased in the cytoplasm of another cell. The driving force underlying this process of membrane movement has remained unclear, although components of the machinery have been characterized. Here we provide evidence that synthesis of peptidoglycan, the rigid, strength bearing extracellular polymer of bacteria, is a key part of the missing force‐generating mechanism for engulfment. We observed that sites of peptidoglycan synthesis initially coincide with the engulfing membrane and later with the site of engulfment membrane fission. Furthermore, compounds that block muropeptide synthesis or polymerization prevented membrane migration in cells lacking a component of the engulfment machinery (SpoIIQ), and blocked the membrane fission event at the completion of engulfment in all cells. In addition, these compounds inhibited bulge and vesicle formation that occur in spoIID mutant cells unable to initiate engulfment, as did genetic ablation of a protein that polymerizes muropeptides. This is the first report to our knowledge that peptidoglycan synthesis is necessary for membrane movements in bacterial cells and has implications for the mechanism of force generation during cytokinesis.  相似文献   

11.
Engulfment of the forespore by the mother cell is a universal feature of endosporulation. In Bacillus subtilis, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH form a channel, essential for endosporulation, through which the developing spore is nurtured. The two proteins also form a backup system for engulfment. Unlike in B. subtilis, SpoIIQ of Clostridium difficile has intact LytM zinc‐binding motifs. We show that spoIIQ or spoIIIAH deletion mutants of C. difficile result in anomalous engulfment, and that disruption of the SpoIIQ LytM domain via a single amino acid substitution (H120S) impairs engulfment differently. SpoIIQ and SpoIIQH120S interact with SpoIIIAH throughout engulfment. SpoIIQ, but not SpoIIQH120S, binds Zn2+, and metal absence alters the SpoIIQ‐SpoIIIAH complex in vitro. Possibly, SpoIIQH120S supports normal engulfment in some cells but not a second function of the complex, required following engulfment completion. We show that cells of the spoIIQ or spoIIIAH mutants that complete engulfment are impaired in post‐engulfment, forespore and mother cell‐specific gene expression, suggesting a channel‐like function. Both engulfment and a channel‐like function may be ancestral functions of SpoIIQ‐SpoIIIAH while the requirement for engulfment was alleviated through the emergence of redundant mechanisms in B. subtilis and related organisms.  相似文献   

12.
Efficient apoptotic cell engulfment is important for both tissue homeostasis and immune response in mammals. In the present study, we report that Beclin 1 (a regulator of autophagy) is required for apoptotic cell engulfment. The engulfment process was largely abolished in Beclin 1 knock-out cells, and Beclin 1 knockdown significantly decreased apoptotic cell internalization in macrophage and fibroblast cell lines. Beclin 1 was recruited to the early phagocytic cup along with the generation of phosphatidylinositol 3-phosphate and Rac1, which regulates actin dynamics in lamellipodia. No lamellipodia were formed in Beclin 1 knock-out cells, and Beclin 1 knockdown completely inhibited the promotion of engulfment by ectopic expression of Rac1. Beclin 1 was co-immunoprecipitated with Rac1. These data indicate that Beclin 1 coordinates actin dynamics and membrane phospholipid synthesis to promote efficient apoptotic cell engulfment.  相似文献   

13.
Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfment of the cell corpse. To monitor cell engulfment in vivo, we developed a fluorogenic beta-galactosidase substrate that is cleaved by an endogenous, lysosomal beta-galactosidase activity. The pattern of cell engulfment in wild-type embryos correlated well with the known pattern of apoptosis. Surprisingly, the pattern of cell engulfment persisted in apoptosis-deficient embryos. We provide evidence for a caspase-independent engulfment process that affects the majority of cells expected to die in developing Drosophila embryos.  相似文献   

14.
15.
Enveloped viruses such as HIV-1 enter their hosts by first establishing a contact region at the cell surface, which is stabilized by the formation of receptor-ligand complexes. We show that the favorable contact energy stemming from the formation of the receptor complexes in the interaction zone is sufficient to drive the engulfment of the virus by the cell. Using a continuum model, we show that the equilibrium engulfment depth and the force driving the engulfment are functions of the virus size and the complex formation energy. Resistance to engulfment is dominated by the elastic deformation of the cytoskeleton.  相似文献   

16.
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway includes the adaptor protein CED-2 CrkII and the small GTPase CED-10 Rac, and acts to rearrange the cytoskeleton of the engulfing cell. The other pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Although many components required for engulfment have been identified, little is known about inhibition of engulfment. The tyrosine kinase Abl regulates the actin cytoskeleton in mammals and Drosophila in multiple ways. For example, Abl inhibits cell migration via phosphorylation of CrkII. We tested whether ABL-1, the C. elegans ortholog of Abl, inhibits the CED-2 CrkII-dependent engulfment of apoptotic cells. Our genetic studies indicate that ABL-1 inhibits apoptotic cell engulfment, but not through CED-2 CrkII, and instead acts in parallel to the two known engulfment pathways. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The loss of ABL-1 function partially restores normal DTC migration in the CED-10 Rac pathway mutants. We found that ABI-1 the C. elegans homolog of mammalian Abi (Abl interactor) proteins, is required for engulfment of apoptotic cells and proper DTC migration. Like Abl, Abi proteins are cytoskeletal regulators. ABI-1 acts in parallel to the two known engulfment pathways, likely downstream of ABL-1. ABL-1 and ABI-1 interact physically in vitro. We propose that ABL-1 opposes the engulfment of apoptotic cells by inhibiting ABI-1 via a pathway that is distinct from the two known engulfment pathways.  相似文献   

17.
Spore formation in Bacillus subtilis is characterized by activation of RNA polymerase sigma factors, including the late-expressed σG. During spore formation an asymmetric division occurs, yielding the smaller prespore and the larger mother cell. At division, only 30% of the chromosome is in the prespore, and the rest is then translocated into the prespore. Following completion of engulfment of the prespore by the mother cell, σG is activated in the prespore. Here we tested the link between engulfment and σG activation by perturbing DNA translocation and replication, which are completed before engulfment. One approach was to have large DNA insertions in the chromosome; the second was to have an impaired DNA translocase; the third was to use a strain in which the site of termination of chromosome replication was relocated. Insertion of 2.3 Mb of Synechocystis DNA into the B. subtilis genome had the largest effect, delaying engulfment by at least 90 min. Chromosome translocation was also delayed and was completed shortly before the completion of engulfment. Despite the delay, σG became active only after the completion of engulfment. All results are consistent with a strong link between completion of engulfment and σG activation. They support a link between completion of chromosome translocation and completion of engulfment.  相似文献   

18.
Cellular engulfment of particles, cells or solutes displaces large domains of plasma membrane into intracellular membranous vacuoles. This transfer of membrane is accompanied by major transitions of the phosphoinositide (PI) species that comprise the cytoplasmic face of membrane bilayers. Mapping of membrane PIs during engulfment reveals distinct patterns of protein and PI distributions associated with each stage of engulfment, which correspond with activities that regulate the actin cytoskeleton, membrane movements and vesicle secretion. Experimental manipulation of PI chemistry during engulfment indicates that PIs integrate organelle identity and orient signal transduction cascades within confined subdomains of membrane. These pathways are exploited by microbial pathogens to direct or redirect the engulfment process.  相似文献   

19.
BACKGROUND: Phagocytosis of cells undergoing apoptosis is essential during development, cellular turnover, and wound healing. Failure to promptly clear apoptotic cells has been linked to autoimmune disorders. C. elegans CED-12 and mammalian ELMO are evolutionarily conserved scaffolding proteins that play a critical role in engulfment from worm to human. ELMO functions together with Dock180 (a guanine nucleotide exchange factor for Rac) to mediate Rac-dependent cytoskeletal reorganization during engulfment and cell migration. However, the components upstream of ELMO and Dock180 during engulfment remain elusive. RESULTS: Here, we define a conserved signaling module involving the small GTPase RhoG and its exchange factor TRIO, which functions upstream of ELMO/Dock180/Rac during engulfment. Complementary studies in C. elegans show that MIG-2 (which we identify as the homolog of mammalian RhoG) and UNC-73 (the TRIO homolog) also regulate corpse clearance in vivo, upstream of CED-12. At the molecular level, we identify a novel set of evolutionarily conserved Armadillo (ARM) repeats within CED-12/ELMO that mediate an interaction with activated MIG-2/RhoG; this, in turn, promotes Dock180-mediated Rac activation and cytoskeletal reorganization. CONCLUSIONS: The combination of in vitro and in vivo studies presented here identify two evolutionarily conserved players in engulfment, TRIO/UNC73 and RhoG/MIG-2, and the TRIO --> RhoG signaling module is linked by ELMO/CED-12 to Dock180-dependent Rac activation during engulfment. This work also identifies ARM repeats within CED-12/ELMO and their role in linking RhoG and Rac, two GTPases that function in tandem during engulfment.  相似文献   

20.
Engulfment in Bacillus subtilis is mediated by two complementary systems, SpoIID, SpoIIM and SpoIIP (DMP), which are essential for engulfment, and the SpoIIQ-SpoIIIAGH (Q-AH) zipper, which provides a secondary engulfment mechanism and recruits other proteins to the septum. We here identify two mechanisms by which DMP localizes to the septum. The first depends on SpoIIB, which is recruited to the septum during division and provides a septal landmark for efficient DMP localization. However, sporangia lacking SpoIIB ultimately localize DMP and complete engulfment, suggesting a second mechanism for DMP localization. This secondary targeting pathway depends on SpoIVFA and SpoIVFB, which are recruited to the septum by the Q-AH zipper. The absence of a detectable localization phenotype in mutants lacking only SpoIVFAB (or Q-AH) suggests that SpoIIB provides the primary DMP localization pathway while SpoIVFAB provides a secondary pathway. In keeping with this hypothesis, the spoIIB spoIVFAB mutant strain has a synergistic engulfment defect at septal thinning (which requires DMP) and is completely defective in DMP localization. Thus, the Q-AH zipper both provides a compensatory mechanism for engulfment when DMP activity is reduced, and indirectly provides a compensatory mechanism for septal localization of DMP when its primary targeting pathway is disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号