首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxylamine and its derivatives of general formula H2NOR react with aldehydes and aldimines to produce oximes. If R corresponds to the side chain of a natural amino acid, such compounds can be thought of as analogs of the corresponding amino acids, lacking the alpha-carboxylate group. Oximes formed between such compounds and pyridoxal phosphate in the active site of aspartate amino-transferase mimic external aldimine intermediates that occur during catalysis by this enzyme. The properties of oxime derivatives of mitochondrial aspartate aminotransferase with hydroxylamine and 6 compounds H2NOR were studied by absorption spectroscopy and circular dichroism in solution and by linear dichroism in crystals. Stable oximes, absorbing at lambda max congruent to 380 nm and exhibiting a negative Cotton effect, were obtained with the carboxylate-containing compounds. The oximes formed with carboxylate-free compounds showed somewhat different properties and stability. With H-Tyr a stable complex absorbing at lambda max congruent to 370 nm rather than at 380 nm, was obtained, H-Ala and H-Phe produced unstable oximes with the initial absorption band at lambda max congruent to 380 nm that was gradually replaced by a band at lambda max congruent to 340 nm. The species absorbing at 340 nm were shown to be coenzyme-inhibitor complexes which were gradually released from the enzyme. A similar 330-340 nm absorption band was observed upon reaction of the free coenzyme with all hydroxylamine inhibitors at neutral pH-values. The results of the circular dichroism experiments in solution and the linear dichroism studies in microcrystals of mAspAT indicate that the coenzyme conformation in these inhibitor/enzyme complexes is similar to that occurring in an external aldimine analogue, the 2-MeAsp/mAspAT complex. Co-crystallizations of the enzyme with the H2NOR compounds were also carried out. Triclinic crystals were obtained in all cases, suggesting that the "closed" structure cannot be stabilized by a single carboxylate group.  相似文献   

2.
Aromatic amino acid aminotransferase is active toward both aromatic and dicarboxylic amino acids, and the mechanism for this dual substrate recognition has been an issue in the enzymology of this enzyme. Here we show that, in the reactions with aromatic and dicarboxylic ligands, the pK(a) of the Schiff base formed between the coenzyme pyridoxal 5'-phosphate and Lys258 or the substrate increases successively from 6.6 in the unliganded enzyme to approximately 8.8 in the Michaelis complex and to >10.5 in the external Schiff base complex. Mutations of Arg292 and Arg386 to Leu, which mimic neutralization of the positive charges of the two arginine residues by the ligand carboxylate groups, increased the Schiff base pK(a) by 0.1 and 0.7 unit, respectively. In contrast to these moderate effects of the Arg mutations, the cleavage of the Lys258 side chain of the Schiff base, which was brought about by preparing a mutant enzyme in which Lys258 was changed to Ala and the Schiff base was reconstituted with methylamine, produced the Schiff base pK(a) value of 10.2, that being 3.6 units higher than that of the wild-type enzyme. The observation indicates that the Schiff base pK(a) in the enzyme is lowered by the torsion around the C4-C4' axis of the Schiff base and suggests that the pK(a) is mainly controlled by changing the torsion angle during the course of catalysis. This mechanism, first observed for the reaction of aspartate aminotransferase with aspartate [Hayashi, H., Mizuguchi, H., and Kagamiyama, H. (1998) Biochemistry 37, 15076-15085], does not require the electrostatic contribution from the omega-carboxylate group of the substrate, and can explain why in aromatic amino acid aminotransferase the aromatic substrates can increase the Schiff base pK(a) during catalysis to the same extent as the dicarboxylic substrates. This is the first example in which the torsion pK(a) coupling of the pyridoxal 5'-phosphate Schiff base has been demonstrated in pyridoxal enzymes other than aspartate aminotransferase, and suggests the generality of the mechanism in the catalysis of aminotransferases related to aspartate aminotransferase.  相似文献   

3.
The aspartate:2-oxoglutarate aminotransferase from the protozoon Trichomonas vaginalis exists as a mixture of sub-forms of identical Mr and amino acid composition, and of similar catalytic properties. The amino acid composition closely resembles that of aspartate aminotransferase from prokaryotic and vertebrate sources. Some molecular and catalytic properties of the T. vaginalis aspartate aminotransferase are compared with those of the cytoplasmic pig heart enzyme. A major difference is in the ability of the trichomonal enzyme to transaminate aromatic amino acids and 2-oxo acids. A range of inhibitors have been used to compare the active-site regions of the T. vaginalis and cytoplasmic pig heart aspartate aminotransferases.  相似文献   

4.
The aromatic amino acid aminotransferase was purified to a homogenous state from a gramicidin S-producing strain of Bacillus brevis. The enzyme shows a molecular weight of about 71,000 on gel-filtration. The subunit molecular weight is about 35,000 as determined by sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is a dimer. The enzyme exhibits absorption maxima near 425 and 330 nm at neutral pH. One mole of pyridoxal phosphate is bound per subunit. The enzyme has amino donor specificity for aromatic amino acids, L-phenylalanine, L-tyrosine, and L-tryptophan, and utilizes 2-oxoglutarate as the amino acceptor. This enzyme activity was separated from both the aspartate aminotransferase activity and the branched chain amino acid aminotransferase activity by chromatography on DEAE-Sephadex.  相似文献   

5.
Aspartate: 2-oxoglutarate aminotransferase from the anaerobic protozoon Trichomonas vaginalis was purified to homogeneity and characterized. It is a dimeric protein of overall Mr approx. 100000. Only a single isoenzyme was found in T. vaginalis. The overall molecular and catalytic properties have features in common with both the vertebrate cytoplasmic and mitochondrial isoenzymes. The purified aspartate aminotransferase from T. vaginalis showed very high rates of activity with aromatic amino acids as donors and 2-oxoglutarate as acceptor. This broad-spectrum activity was restricted to aromatic amino acids and aromatic 2-oxo acids, and no significant activity was seen with other common amino acids, other than with the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction. Co-purification and co-inhibition, by the irreversible inhibitor gostatin, of the aromatic amino acid aminotransferase and aspartate aminotransferase activities, in conjunction with competitive substrate experiments, strongly suggest that a single enzyme is responsible for both activities. Such high rates of aromatic amino acid aminotransferase activity have not been reported before in eukaryotic aspartate aminotransferase.  相似文献   

6.
A subfamily I aminotransferase gene homologue containing an open reading frame encoding 381 amino acid residues (Mr=42,271) has been identified in the process of the genome project of an extremely thermophilic bacterium, Thermus thermophilus HB8. Alignment of the predicted amino acid sequence using FASTA shows that this protein is a member of aminotransferase subfamily Igamma. The protein shows around 40% identity with both T. thermophilus aspartate aminotransferase [EC 2.6.1.1] and mammalian glutamine:phenylpyruvate aminotransferase [EC 2.6.1.64]. The recombinant protein expressed in Escherichia coli is a homodimer with a subunit molecular weight of 42,000, has one pyridoxal 5'-phosphate per subunit, and is highly active toward glutamine, methionine, aromatic amino acids, and corresponding keto acids, but has no preference for alanine and dicarboxylic amino acids. These substrate specificities are similar to those described for mammalian glutamine: phenylpyruvate aminotransferase. This is the first enzyme reported so far that has the glutamine aminotransferase activity in non-eukaryotic cells. As the presence of aromatic amino acid:2-oxoglutarate aminotransferase [EC 2.6.1.57] has not been reported in T. thermophilus, this enzyme is expected to catalyze the last transamination step of phenylalanine and tyrosine biosynthesis. It may also be involved in the methionine regeneration pathway associated with polyamine biosynthesis. The enzyme shows a strikingly high pKa value (9.3) of the coenzyme Schiff base in comparison with other subfamily I aminotransferases. The origin of this unique pKa value and the substrate specificity is discussed based on the previous crystallographic data of T. thermophilus and E. coli aspartate aminotransferases.  相似文献   

7.
Arg292 of E. coli aspartate aminotransferase was substituted with valine or leucine by site-directed mutagenesis. In comparison with the wild-type enzyme, either of the mutant enzymes showed a decrease by over 5 orders of magnitude of kcat/km values for aspartate and glutamate. This supports the contention that Arg292 is important for determining the specificity of this enzyme for dicarboxylic substrates. In contrast, mutant enzymes displayed a 5- to 10-fold increase in kcat/Km values for aromatic amino acids as substrates. Thus, introduction of an uncharged, hydrophobic side chain into position 292 leads to a striking alteration in substrate specificity of this enzyme, thereby improving catalytic efficiency toward aromatic amino acids.  相似文献   

8.
Resonance Raman (RR) spectra are reported for aspartate aminotransferase from pig heart cytosol, and for inhibitor complexes. They are interpreted with reference to the previously analyzed spectra of pyridoxal phosphate (PLP) Schiff base adducts. This comparison shows that, as expected, the pyridine N atom is protonated in the native enzyme at pH 5, and in the glutarate complexes at pH 8.5, and that it is also protonated in the alpha-methylaspartate complex; the stabilization of the pyridine proton at high pH must be due to the interaction with aspartate 222 seen in the x-ray crystal structure. RR spectra of the erythro-beta-hydroxy-DL-aspartate complex, representing the p-quinoid enzyme intermediate, as well as of AlIII complexes of PLP Schiff bases with phenylalanine and tyrosine ethyl ester have been obtained via the coherent anti-Stokes Raman scattering technique, and partially assigned. A novel H/D exchange at the coenzyme C4' atom has been observed for the native enzyme in D2O, and has been determined, by a combination of NMR and RR measurements, to be due to the Raman laser irradiation. This photoprocess, which is not observed for PLP Schiff bases in aqueous solution, is attributed to a photoexcited p-quinoid intermediate, similar to that implicated in the enzyme mechanism. It is suggested that this intermediate is stabilized by protein interactions which localize charge on the phenolate O atom, plausibly a hydrogen bond from the nearby tyrosine 225. H/D exchange would then follow via the aldimine-ketimine interconversion known to take place in the enzyme reaction.  相似文献   

9.
The mitochondrial and cytosolic isoenzymes of aspartate aminotransferase from chicken heart accept as substrates L-phenylalanine, L-tyrosine and L-tryptophan. The specific activities of the mitochondrial isoenzyme toward these substrates are between 0.1 to 0.5% of that toward aspartate and two orders of magnitude higher than that toward alanine. The specific activities of the cytosolic isoenzyme toward the aromatic substrates are 10 to 70% of the respective values of the mitochondrial isoenzyme. The activities of both isoenzymes toward aromatic amino acids are increased two- to threefold by 1 M formate. Larger increases by formate were observed for the alanine aminotransferase activity of both isoenzymes whereas their aspartate aminotransferase activity was inhibited by formate. The opposite effects of formate on the activities toward the aromatic and aliphatic monocarboxylic substrates on the one hand and the dicarboxylic substrate on the other are consonant with the notion of formate occupying the binding site of the distal carboxylate group of the substrate (Morino Y., Osman A.M., and Okamoto M. (1974) J. Biol. Chem. 249, 6684–6692). Apparently, in the ternary complex of aspartate aminotransferase with formate and aromatic amino acids, the aromatic rings of the latter bind to a site which does not overlap with the binding site for the distal carboxylate.  相似文献   

10.
The active site of Sulfolobus solfataricus aspartate aminotransferase   总被引:1,自引:0,他引:1  
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus binds pyridoxal 5' phosphate, via an aldimine bond, with Lys-241. This residue has been identified by reducing the enzyme in the pyridoxal form with sodium cyanoboro[3H]hydride and sequencing the specifically labeled peptic peptides. The amino acid sequence centered around the coenzyme binding site is highly conserved between thermophilic aspartate aminotransferases and differs from that found in mesophilic isoenzymes. An alignment of aspartate aminotransferase from Sulfolobus solfataricus with mesophilic isoenzymes, attempted in spite of the low degree of similarity, was confirmed by the correspondence between pyridoxal 5' phosphate binding residues. Using this alignment it was possible to insert the archaebacterial aspartate aminotransferase into a subclass, subclass I, of pyridoxal 5' phosphate binding enzymes comprising mesophilic aspartate aminotransferases, tyrosine aminotransferases and histidinol phosphate aminotransferases. These enzymes share 12 invariant amino acids most of which interact with the coenzyme or with the substrates. Some enzymes of subclass I and in particular aspartate aminotransferase from Sulfolobus solfataricus, lack a positively charged residue, corresponding to Arg-292, which in pig cytosolic aspartate aminotransferase interacts with the distal carboxylate of the substrates (and determines the specificity towards dicarboxylic acids). It was confirmed that aspartate aminotransferase from Sulfolobus solfataricus does not possess any arginine residue exposed to chemical modifications responsible for the binding of omega-carboxylate of the substrates. Furthermore, it has been found that aspartate aminotransferase from Sulfolobus solfataricus is fairly active when alanine is used as substrate and that this activity is not affected by the presence of formate. The KM value of the thermophilic aspartate aminotransferase towards alanine is at least one order of magnitude lower than that of the mesophilic analogue enzymes.  相似文献   

11.
The mechanism for the reaction of aspartate aminotransferase with the C4 substrate, l-aspartate, has been well established. The binding of the C4 substrate induces conformational change in the enzyme from the open to the closed form, and the entire reaction proceeds in the closed form of the enzyme. On the contrary, little is known about the reaction with the C5 substrate, l-glutamate. In this study, we analyzed the pH-dependent binding of 2-methyl-l-glutamate to the enzyme and showed that the interaction between the amino group of 2-methyl-l-glutamate and the pyridoxal 5'-phosphate aldimine is weak compared to that between 2-methyl-l-aspartate and the aldimine. The structures of the Michaelis complexes of the enzyme with l-aspartate and l-glutamate were modeled on the basis of the maleate and glutarate complex structures of the enzyme. The result showed that l-glutamate binds to the open form of the enzyme in an extended conformation, and its alpha-amino group points in the opposite direction of the aldimine, while that of l-aspartate is close to the aldimine. These models explain the observations for 2-methyl-l-glutamate and 2-methyl-l-aspartate. The crystal structures of the complexes of aspartate aminotransferase with phosphopyridoxyl derivatives of l-glutamate, d-glutamate, and 2-methyl-l-glutamate were solved as the models for the external aldimine and ketimine complexes of l-glutamate. All the structures were in the closed form, and the two carboxylate groups and the arginine residues binding them are superimposable on the external aldimine complex with 2-methyl-l-aspartate. Taking these facts altogether, it was strongly suggested that the binding of l-glutamate to aspartate aminotransferase to form the Michaelis complex does not induce a conformational change in the enzyme, and that the conformational change to the closed form occurs during the transaldimination step. The hydrophobic residues of the entrance of the active site, including Tyr70, are considered to be important for promoting the transaldimination process and hence the recognition of the C5 substrate.  相似文献   

12.
D- and L-aminooxysuccinate were synthesized and evaluated as inhibitors of cytoplasmic aspartate aminotransferase (EC 2.6.1.1) from porcine heart. L-Aminooxysuccinate was shown to be a slow binding inhibitor of the pyridoxal phosphate form of the enzyme with a Ki of 160 nM and a half-life of the inhibited complex of 8 min. Kinetic analysis revealed that inhibition followed a two-step mechanism in which the last step was rate-limiting. D-Aminooxysuccinate was not inhibitory up to a concentration of 0.1 mM. These compounds were compared to D- and L-hydrazinosuccinate, which are potent slow binding inhibitors of aspartate aminotransferase with Ki values of 1.5 and 0.5 nM, respectively. Models of all four analogs were built into the active site of the closed form of the enzyme. The energy-minimized conformations of both L-isomers bound to aspartate aminotransferase show better geometry for hydrogen bond and ion pair formation than do the corresponding D-isomers. The aldimine double bond formed by the L-isomers is not coplanar with the pyridoxal phosphate ring in accordance with the spectral properties of the inhibitor complexes that are characterized by broad absorbance bands. This lack of planarity was not evident for the models of D-hydrazinosuccinate and D-aminooxysuccinate.  相似文献   

13.
A protease from Streptomyces violaceochromogenes (Murao, S., Nishino, Y., & Maeda, Y. (1984) Agric. Biol. Chem. 48, 2163-2166) is known to inactivate pig heart aspartate aminotransferase [EC 2.6.1.1]. Chemical analysis of the core proteins and peptide fragments produced upon proteolysis of the aminotransferase revealed that peptide bond cleavage occurred specifically at Leu 20 with concomitant inactivation. Neither inactivation nor peptide bond cleavage was observed with the mitochondrial isoenzyme. The proteolytically produced derivative 21-412 of the cytosolic isoenzyme retained approximately 0.1% enzymic activity for transamination with natural dicarboxylic substrates. The pyridoxal form of the derivative 21-412 was fully converted by cysteinesulfinate or alanine to the pyridoxamine form and conversely the pyridoxamine form of the derivative was also fully converted by 2-oxoglutarate or pyruvate into the pyridoxal form, indicating that the derivative was still catalytically competent. However, the rates of reaction with dicarboxylic substrates were much reduced whereas the rates with monocarboxylic substrates remained at an order of magnitude similar to that observed with the native enzyme. Thus the NH2-terminal segment appears to be an import structural component which determines the substrate specificity of aspartate aminotransferase for dicarboxylic keto and amino acids. A substantial alteration in the molecular structure accompanying the loss of the NH2-terminal 20 residues was also reflected by the decrease in heat stability and in the lowering of the pKa value for His 68, which is involved in the intersubunit interaction of this dimeric enzyme.  相似文献   

14.
Abstract— Mitochondrial and cytoplasmic forms of aspartate aminotransferase were purified from rat brain homogenates and tested for their ability to catalyze transamination of various aromatic amino acids. The mitochondrial enzyme exhibited activity toward tyrosine and phenylalanine with 2-oxoglutar-ate as acceptor, although the specific activities were less than 1% of the corresponding aspartate activity when all substrates were 10 mM. Even less activity was seen with DOPA, 5-hydroxytryptophan and tryptophan. The cytoplasmic aspartate aminotransferase was active toward tryptophan, 5-hydroxytryptophan and DOPA, but these transaminations were favored by pyruvate or oxaloacetate rather than 2-oxoglutarate as keto acid. Based on co-migration of aromatic activities with the respective aspartate aminotransferases during isoelectric focusing and based on equal sensitivities of aromatic transamination and aspartate transamination to inhibition by vinylglycine, it was concluded that all activities resided in the aspartate aminotransferase enzymes. Some doubt exists, however, as to the physiological significance of these alternate activities in view of the requirement that aromatic amino acids must compete with aspartate for transamination by these enzymes.  相似文献   

15.
W T Jenkins 《Biochimie》1989,71(4):405-410
A reinvestigation of the effects of pH and salt concentration on the proton and dicarboxylic acid dissociation constants of pig heart aspartate aminotransferase shows that both anions and cations were involved concomitantly, both as stoichiometric reactants and bioenergetically. Equations are presented which can be used experimentally, to determine the numbers of salt ions (their thermodynamic stoichiometries) involved in biochemical equilibria such as proton and ligand dissociations from macromolecules. These equations were used to reinvestigate the effects of salts on the chromophoric pKa of the enzyme prosthetic group, the interaction of the enzyme with dicarboxylic acids, and the overall equilibrium for the transamination half-reaction.  相似文献   

16.
L-Kynurenine aminotransferase [L-kynurenine:2-oxoglutarate aminotransferase (cyclizing), EC 2.6.1.7] has been purified to homogeneity and crystallized from cell-free extracts of a yeast, Hansenula schneggii, grown in a medium containing L-tryptophan as an inducer. The enzyme has a molecular weight of about 100,000 and consists of two subunits identical in molecular weight (52,000). The enzyme exhibits absorption maxima at 280, 335, and 430 nm, and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. The enzyme-bound pyridoxal 5'-phosphate shows negative circular dichroic extrema, in contrast with other pyridoxal 5'-phosphate acting on L-amino acids. In addition to L-kynurenine and alpha-ketoglutarate, which are the most preferred substrates, a large number of L-amino acids and alpha-keto acids can serve as substrates; the extremely broad substrate specificity is the most characteristic feature of this yeast enzyme. The enzyme activity is significantly affected by both carbonyl and sulfhydryl reagents. Certain dicarboxylic acids such as adipate and pimelate act as competitive inhibitors. Addition of various substrate amino acids to the culture medium results in the inductive formation of aminotransferases which are immunochemically indistinguishable from L-kynurenine aminotransferase.  相似文献   

17.
The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be involved in the complex process of cheese flavor development. In lactococci, transamination is the first step in the degradation of aromatic and branched-chain amino acids which are precursors of aroma compounds. Here, the major aromatic amino acid aminotransferase of a Lactococcus lactis subsp. cremoris strain was purified and characterized. The enzyme transaminates the aromatic amino acids, leucine, and methionine. It uses the ketoacids corresponding to these amino acids and alpha-ketoglutarate as amino group acceptors. In contrast to most bacterial aromatic aminotransferases, it does not act on aspartate and does not use oxaloacetate as second substrate. It is essential for the transformation of aromatic amino acids to flavor compounds. It is a pyridoxal 5'-phosphate-dependent enzyme and is composed of two identical subunits of 43.5 kDa. The activity of the enzyme is optimal between pH 6.5 and 8 and between 35 and 45 degrees C, but it is still active under cheese-ripening conditions.  相似文献   

18.
Two aminotransferases from Escherichia coli were purified to homogeneity by the criterion of gel electrophoresis. The first (enzyme A) is active on L-aspartic acid, L-tyrosine, L-phenylalanine, and L-tryptophan; the second (enzyme B) is active on the aromatic amiono acids. Enzyme A is identical in substrate specificity with transaminase A and is mainly an aspartate aminotransferase; enzyme B has never been described before and is an aromatic amino acid aminotransferase. The two enzymes are different in the Vmax and Km values with their common substrates and pyridoxal phosphate, in heat stability (enzyme A being heat-stable and enzyme B being heat-labile at 55 degrees) and in pH optima with the amino acid substrates. They are similar in their amino acid composition, each enzyme appears to consist of two subunits, and enzyme B may be converted to enzyme A by controlled proteolysis with subtilsin. The conversion was detected by the generation of new aspartate aminotransferase activity from enzyme B and was further verified by identification by acrylamide gel electrophoresis of the newly formed enzyme A. The two enzymes appear to be products of two genes different in a small, probably terminal, nucleotide sequence.  相似文献   

19.
Formation equilibria of copper(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Cu(AMBI)L (L = amino acid, amide, dicarboxylic acid or DNA constituents) have been investigated. Ternary complexes of amino acids or amides are formed by a simultaneous mechanism. Amino acids form the complex Cu(AMBI)L, whereas amides form two complex species Cu(AMBI)L and Cu(AMBI)(LH−1). The ternary complexes of copper(II) with AMBI and dicarboxylic acids or DNA units are formed by a stepwise mechanism, whereby binding of copper(II) to AMBI is followed by ligation of the dicarboxylic acids or DNA components. The values of Δ log K indicate that the ternary complexes containing aromatic amino acids are significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. This may be taken as an evidence for a stacking interaction between the aromatic moiety of AMBI and the aromatic side chains of the bio-active ligands. The solid complexes Cu(AMBI)L where L = 1,1-cyclobutanedicarboxylic acid (CBDCA) and malonic acid were separated and identified by elemental analysis and infrared spectroscopy and magnetic moment. The decomposition course and steps for the isolated complexes were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(AMBI)2+ complex. The kinetic data is fitted assuming that the hydrolysis reaction proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by OH ion. The second step involves the equilibrium formation of the hydroxo-complex Cu(AMBI)(MeGly)(OH) followed by intramolecular OH attack.  相似文献   

20.
We describe the complete purification of aromatic aminotransferase I, the enzyme responsible for the ability of Klebsiella aerogenes to use tryptophan and phenylalanine as sole sources of nitrogen, as well as the partial purification of aromatic aminotransferase IV. An examination of the properties of these enzymes revealed that aminotransferase I had much greater affinity for the aromatic amino acids than aminotransferase IV, explaining the essential role of aminotransferase I in the utilization of exogenously supplied aromatic amino acids. The properties of aminotransferase IV suggest that this enzyme is actually an aspartate aminotransferase (EC 2.6.1.1), corresponding to the product of the aspC gene of Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号