首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol are important contaminants present in Brazilian gasoline, it is essential to develop technology that can be used in the bioremediation of gasoline-contaminated aquifers. This paper evaluates the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor fed with water containing gasoline constituents under denitrifying conditions. Two HAIB reactors filled with polyurethane foam matrices (5 mm cubes, 23 kg/m3 density and 95 % porosity) for biomass attachment were assayed. The reactor fed with synthetic substrate containing protein, carbohydrates, sodium bicarbonate and BTEX solution in ethanol, at an Hydraulic retention time (HRT) of 13.5 h, presented hydrocarbon removal efficiencies of 99 % at the following initial concentrations: benzene 6.7 mg/L, toluene 4.9 mg/L, m-xylene and p-xylene 7.2 mg/L, ethylbenzene 3.7 mg/L, and nitrate 60 mg N/L. The HAIB reactor fed with gasoline-contaminated water at an HRT of 20 h showed hydrocarbon removal efficiencies of 96 % at the following initial concentrations: benzene, 4.9 mg/L; toluene, 7.2 mg/L; m-xylene, 3.7 mg/L; and nitrate 400 mg N/L. Microbiological observations along the length of the HAIB reactor fed with gasoline-contaminated water confirmed that in the first segment of the reactor, denitrifying metabolism predominated, whereas from the first sampling port on, the metabolism observed was predominantly methanogenic.  相似文献   

2.
Removal of three typical aromatic hydrocarbons, benzene, biphenyl and naphthalene by an anaerobic filter (AF) reactor under continuous mode and denitrifying conditions was studied. Results showed that the AF reactor could degrade these aromatic hydrocarbons effectively under above-mentioned conditions. When influent wastewater contained 900 mg COD/l and about 60 mg (total aromatic hydrocarbons)/l, 90% and 84% removal efficiency could be achieved for them respectively. When COD/NO3 -N ratio (C/N) was in the range 5–30, the removal of benzene was slightly influenced by C/N and it remained stable at about 90%. However, degradation of naphthalene, biphenyl and total COD was greatly influenced by C/N, and highest removal was achieved at C/N = 15, it was 90%, 85% and 82% for COD, naphthalene and biphenyl, respectively. Degradation of these three aromatic hydrocarbons followed the order: benzene > naphthalene > biphenyl.  相似文献   

3.
An expanded granular sludge bed (EGSB) reactor was adopted to incubate bio-granules that could simultaneously convert 4.8 kg-S m?3 d?1 of sulfide in 97% efficiency; 2.6 kg-N m?3 d?1 of nitrate in 92% efficiency; and 2.7 kg-C m?3 d?1 acetate in 95% efficiency. Mass balance calculation of sulfur, nitrogen, and carbon over the EGSB reactor confirmed the performance results. This noted reactor performance is much higher than those reported in literature. Stoichiometric relation suggests that the nitrate was reduced to nitrite via autotrophic denitrification pathway, then the formed nitrite was converted via heterotrophic denitrification pathway to N2.  相似文献   

4.
This work conducted a denitrifying sulfide removal (DSR) test in an expanded granular sludge bed (EGSB) reactor at sustainable loadings of 6.09 kg m−3 day−1 for sulfide, 3.11 kg m−3 day−1 for nitrate–nitrogen, and 3.27 kg m−1 day−1 for acetate–carbon with >93% efficiency, which is significantly higher than those reported in literature. Strains Pseudomonas sp., Nitrincola sp., and Azoarcus sp. very likely yield heterotrophs. Strains Thermothrix sp. and Sulfurovum sp. are the autotrophs required for the proposed high-rate EGSB-DSR system. The EGSB-DSR reactor experienced two biological breakdowns, one at loadings of 4.87, 2.13, and 1.82 kg m−3 day−1; reactor function was restored by increasing nitrate and acetate loadings. Another breakdown occurred at loadings of up to 8.00, 4.08, and 4.50 kg m−1 day−1; the heterotrophic denitrification pathway declined faster than the autotrophic pathway. The mechanism of DSR breakdown is as follows. High sulfide concentration inhibits heterotrophic denitrifiers, and the system therefore accumulates nitrite. Autotrophic denitrifiers are then inhibited by the accumulated nitrite, thereby leading to breakdown of the DSR process.  相似文献   

5.

Biodecolorization and biodegradation of azo dyes are a challenge due to their recalcitrance and the characteristics of textile effluents. This study presents the use of Halomonas sp. in the decolorization of azo dyes Reactive Black 5 (RB5), Remazol Brilliant Violet 5R (RV5), and Reactive Orange 16 (RO16) under high alkalinity and salinity conditions. Firstly, the effect of air supply, pH, salinity and dye concentration was evaluated. Halomonas sp. was able to remove above 84% of all dyes in a wide range of pH (6–11) and salt concentrations (2–10%). The decolorization efficiency of RB5, RV5, and RO16 was found to be ≥ 90% after 24, 13 and 3 h, respectively, at 50 mg L−1 of dyes. The process was monitored by HPLC-DAD, finding a reduction of dyes along the time. Further, Halomonas sp. was immobilized in volcanic rocks and used in a packed bed reactor for 72 days, achieving a removal rate of 3.48, 5.73, and 8.52 mg L−1 h−1, for RB5, RV5 and RO16, respectively, at 11.8 h. The study has confirmed the potential of Halomonas sp. to decolorize azo dyes under high salinity and alkalinity conditions and opened a scope for future research in the treatment of textile effluents.

  相似文献   

6.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

7.
Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor   总被引:103,自引:0,他引:103  
Abstract Until now, oxidation of ammonium has only been known to proceed under aerobic conditions. Recently, we observed that NH4+ was disappearing from a denitrifying fluidized bed reactor treating effluent from a methanogenic reactor. Both nitrate and ammonium consumption increased with concomitant gas production. A maximum ammonium removal rate of 0.4 kg N · m−3 · d−1 (1.2 mM/h) was observed. The evidence for this anaerobic ammonium oxidation was based on nitrogen and redox balances in continuous-flow experiments. It was shown that for the oxidation of 5 mol ammonium, 3 mol nitrate were required, resulting in the formation of 4 mol dinitrogen gas. Subsequent batch experiments confirmed that the NH4+ conversion was nitrate dependent. It was concluded that anaerobic ammonium oxidation is a new process in which ammonium is oxidized with nitrate serving as the electron acceptor under anaerobic conditions, producing dinitrogen gas. This biological process has been given the name ‘Anammox” (anaerobic ammonium oxidation), and has been patented.  相似文献   

8.
A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from 0.50 to 1.01 kg N/m3·d, the PBR exhibited 100∼98.8% NO3 -N removal efficiencies and nitrite concentrations in the effluent ranged from 0 to 0.6 NO2 -N mg/L. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than 1.01 kg N/m3·d, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.  相似文献   

9.
High levels of nitrate are present in groundwater migrating from the former waste disposal ponds at the Y-12 National Security Complex in Oak Ridge, TN. A field-scale denitrifying fluidized bed reactor (FBR) was designed, constructed, and operated with ethanol as an electron donor for the removal of nitrate. After inoculation, biofilms developed on the granular activated carbon particles. Changes in the bacterial community of the FBR were evaluated with clone libraries (n=500 partial sequences) of the small-subunit rRNA gene for samples taken over a 4-month start-up period. Early phases of start-up operation were characterized by a period of selection, followed by low diversity and predominance by Azoarcus-like sequences. Possible explanations were high pH and nutrient limitations. After amelioration of these conditions, diversification increased rapidly, with the appearance of Dechloromonas, Pseudomonas, and Hydrogenophaga sequences. Changes in NO3, SO4, and pH also likely contributed to shifts in community composition. The detection of sulfate-reducing-bacteria-like sequences closely related to Desulfovibrio and Desulfuromonas in the FBR have important implications for downstream applications at the field site.  相似文献   

10.
Summary An upflow packed bed reactor with lava stones as support for the microbial growth proved to be very useful for the denitrification of industrial waste water by Thiobacillus denitrificans. The application of the plug flow principle allowed higher concentrations of nitrate to be employed than in a stirred tank reactor because inhibitory concentrations of sulfate from thiosulfate oxidation built up only in the upper part of the column — if at all. In experiments with synthetic media nitrate solutions of different strength (NO 3 g/l: 1.8; 3.0; 4.3; 6.1) were tested, each at 5 different residence times (5; 3.3; 2.5; 2.0; 1.7 h). The combination of the two parameters which still allowed 95% denitrification was 3 g NO 3 - /l and 2.5 h residence time; this corresponded to a volumetric nitrate loading of about 25 kg/m3·d. Higher nitrate loadings led to incomplete denitrification coupled with the occurence of nitrite in the outflow. Below the critical loading rate nitrite accumulated only in the lower part of the column and was then gradually reduced. Experiments with simulated middle active waste from processing nuclear fuel which contained numerous heavy metals yielded similar results. — Although pure inorganic media were fed into the reactor the microflora developing as a dense layer covering the lava stones consisted not only of T. denitrificans but also of heterotrophic denitrifiers, mainly Pseudomonas aeruginosa.  相似文献   

11.
A previous three phase fluidized sand bed reactor design was improved by adding a draft tube to improve fluidization and submerged effluent tubes for sand separation. The changes had little influence on the oxygen transfer coefficients(K L a), but greatly reduced the aeration rate required for sand suspension. The resulting 12.5 dm3 reactor was operated with 1 h liquid residence time, 10.2dm3/min aeration rate, and 1.7–2.3 kg sand (0.25–0.35 mm diameter) for the degradation of phenol as sole carbon source. The K La of 0.015 s–1 gave more than adequate oxygen transfer to support rates of 180g phenol/h · m3 and 216 g oxygen/h · m3. The biomass-sand ratios of 20–35 mg volatiles/g gave estimated biomass concentrations of 3–6 g volatiles/dm3. Offline kinetic measurements showed weak inhibition kinetics with constants ofK s=0.2 mg phenol/dm3, K o2=0.5 mg oxygen/dm3 and KinI= 122.5 mg phenol/dm3. Very small biofilm diffusion effects were observed. Dynamic experiments demonstrated rapid response of dissolved oxygen to phenol changes below the inhibition level. Experimentally simulated continuous stagewise operation required three stages, each with 1 h residence time, for complete degradation of 300 mg phenol/dm3 · h.  相似文献   

12.
In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon® rings as a carrier. The medium was a solution of lactose (15–30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h?1 (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h?1: the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%w.  相似文献   

13.
Anaerobic biodegradation of atrazine by the bacterial isolate M91-3 was characterized with respect to mineralization, metabolite formation, and denitrification. The ability of the isolate to enhance atrazine biodegradation in anaerobic sediment slurries was also investigated. The organism utilized atrazine as its sole source of carbon and nitrogen under anoxic conditions in fixed-film (glass beads) batch column systems. Results of HPLC and TLC radiochromatography suggested that anaerobic biotransformation of atrazine by microbial isolate M91-3 involved hydroxyatrazine formation. Ring cleavage was demonstrated by 14CO2 evolution. Denitrification was confirmed by detection of 15N2 in headspace samples of K15NO3-amended anaerobic liquid cultures. In aquatic sediments, mineralization of uniformly ring-labeled [14C]atrazine occurred in both M91-3-inoculated and uninoculated sediment. Inoculation of sediments with M91-3 did not significantly enhance anaerobic mineralization of atrazine as compared to uninoculated sediment, which suggests the presence of indigenous organisms capable of anaerobic atrazine biodegradation. Results of this study suggest that the use of M91-3 in a fixed-film bioreactor may have applications in the anaerobic removal of atrazine and nitrate from aqueous media. Received: 3 September 1997 / Received revision: 4 December 1997 / Accepted: 2 January 1998  相似文献   

14.
A microbial consortium attached onto a polyethylene support was used to evaluate the simultaneous oxidation of sulfide and phenol by denitrification. The phenol, sulfide and nitrate loading rates applied to an inverse fluidized bed reactor were up to 168 mg phenol–C/(l d), 37 mg S2?/(l d) and 168 mg NO3?–N/(l d), respectively. Under steady state operation the consumption efficiencies of phenol, sulfide and nitrate were 100%. The N2 yield (g N2/g NO3?–N) was 0.89. The phenol was mineralized resulting in a yield of 0.82 g bicarbonate–C/g phenol–C and sulfide was completely oxidized to sulfate with a yield of 0.99 g SO42?–S/g S2?. 16S rRNA gene-based microbial community analysis of the denitrifying biofilm showed the presence of Thauera aromatica, Thiobacillus denitrificans, Thiobacillus sajanensis and Thiobacillus sp. This is the first work reporting the simultaneous oxidation of sulfide and phenol in a denitrifying biofilm reactor.  相似文献   

15.
Abstract

Biosorption of malathion from aqueous solution was studied using Bacillus sp. S14 immobilised on calcium alginate (3%) using a packed bed column reactor at a temperature of 25 °C and a pH of 7.0. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and influent malathion concentration. Maximum removal capacity (57%) was found at 4 mL min-1 flow rate, 6.0 cm bed height and 25 mg L-1 influent malathion concentration. The Adam-Bohart model, Wolborska model, Thomas model, Yoon-Nelson model were employed to determine characteristic parameters such as saturation concentration, external mass transfer coefficient, Thomas rate constant, the maximum solid phase concentration of the solute, rate constant, and the time required for 50% adsorbate breakthrough time, which are all useful for process design. Experimental data were well fitted with Adam–Bohart model at the lower region of effluent/influent malathion concentration values but at higher region values data fitted well with the Thomas and Yoon-Nelson models.  相似文献   

16.
Summary A recirculated packed bed batch reactor has been designed for the production of 6-aminopenicillanic acid. It was observed that the flow rate of penicillin G solution is a rate limiting step for its hydrolysis. Under the conditions used, the maximum rate of hydrolysis of penicillin G was observed at a flow rate of 3.0 L/min.  相似文献   

17.
Aims:  An integrated dual reactor system for continuous production of lactic acid by Lactobacillus delbrueckii using biofilms developed on reticulated polyurethane foam (PUF) is demonstrated.
Methods and Results:  Lactobacillus delbrueckii was immobilized on PUF, packed in a bioreactor and used in lactic acid fermentation. The rate of lactic acid production was significantly high with a volumetric productivity of 5 g l−1 h−1 over extended period of time. When coupled to a bioreactor, the system could be operated as dual reactor for over 1000 h continuously without augmentation of inoculum and no compromise on productivity.
Conclusions:  Polyurethane foams offer an excellent support for biofilm formation.
Significance and Impact of the Study:  The system was very robust and could be operated for prolonged period at a volumetric productivity of 4–6 g l−1 h−1.  相似文献   

18.
Bacterial oxidation of sulphide under denitrifying conditions   总被引:11,自引:0,他引:11  
Anoxic H2S oxidation under denitrifying conditions produced sulphur and sulphate in almost equal proportions by an isolated Thiobacillus denitrificans. Under nitrate reducing conditions the rate of sulphide oxidation was approximately 0.9 g sulphide/g biomass h. Nitrate was reduced to nitrite and accumulated during sulphide oxidation. Above 100 mg nitrite/l, the sulphide oxidation rate declined and at 500 mg/l it was totally arrested. The optimum pH for the anoxic sulphide oxidation was around 7.5. Concentrations of sulphate 1500 mg/l and acetate 400 mg/l had no effect on anoxic sulphide oxidation.  相似文献   

19.
Nutrient removal from synthetic wastewater was investigated using a four-step sequencing batch reactor (SBR) at different phenol (C6H5OH) concentrations in order to determine the inhibition effects of phenol on biological nutrient removal. The nutrient removal process consisted of anaerobic, oxic, anoxic, and oxic phases with hydraulic residence times (HRT) of 1 h/3 h/1 h/1 h and a settling phase of 3/4 h. Solids retention time (SRT) was kept constant at 10 days in all experiments. Initial phenol concentrations were varied between 0 and 600 mg l−1 at seven different levels. The effects of phenol on COD, NH4-N, and PO4-P removals and effluent nutrient levels were investigated. Phenol was almost completely degraded up to 400 mg l−1 phenol concentration resulting in almost negligible inhibition effects on COD, NH4-N, and PO4-P removals. Nutrient removals were adversely affected by phenol at concentrations above 400 mg l−1. Above 95% COD, 90% NH4-N and 65% PO4-P removal was obtained for phenol concentrations below 400 mg l−1. The sludge volume index (SVI) was almost constant around 45 ml g−1 for phenol concentrations below 400 mg l−1 but increased to 90 ml g−1 at a phenol level of 600 mg l−1.  相似文献   

20.
The enzymatic synthesis of a mixture of unsaturated fatty acid alpha-butylglucoside esters, containing more than 60% alpha-butylglucoside linoleate, was achieved through lipase-catalyzed esterification. The continuous evaporation under reduced pressure of the water produced enabled substrate conversions greater than 95% to be reached. Two immobilized lipases from Candida antarctica (Chirazyme L2, c.-f., C2) and Rhizomucor miehei (Chirazyme L9, c.-f.) were compared in stirred batch and packed bed configurations. When the synthesis was carried out in stirred batch mode, C. antarctica lipase appeared to be of greater interest than the R. miehei enzyme in terms of stability and regioselectivity. Surprisingly, a change in the process design to a packed bed configuration enabled the stability of R. miehei lipase to be significantly improved, while the C. antarctica lipase efficiency to synthesize unsaturated fatty acid alpha-butylglucoside esters was slightly decreased. Water content in the microenvironment of the biocatalyst was assumed to be responsible for such changes. When the process is run in stirred batch mode, the conditions used promote the evaporation of the essential water surrounding the enzyme, which probably leads to R. miehei lipase dehydration. In contrast, the packed bed design enabled such water evaporation in the microenvironment of the biocatalyt to be avoided, which resulted in a tremendous improvement of R. miehei lipase stability. However, C. antarctica lipase led to the formation of 3% diesters, whereas the final percentage of diesters reached 21% when R. miehei enzyme was used as biocatalyst. A low content of diesters is of greater interest in terms of alpha-butylglucoside linoleate application as linoleic acid carrier, and therefore the enzyme choice will have to be made depending on the properties expected for the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号