首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell polarity is an essential requirement for the proper tissue development of complex organisms. This is underscored by in vivo studies showing that loss of cell polarity contributes to the formation and progression of tumours. Evolutionary conserved multiprotein complexes, such as the Par3-Par6-aPKC or, in short, the Par polarity complex, regulate the establishment of cell polarity. The small Rho GTPases CDC42 and Rac control the activation of the Par polarity complex. Evidence now implicates the Rac activator Tiam1 as a crucial component of the Par complex in regulating neuronal (axonal) and epithelial (apical-basal) polarity. Our current knowledge places Tiam1 at the centre of a pivotal biological process, the establishment and maintenance of cell polarity, and suggests that deregulation of the Tiam1-Par complex contributes to tumourigenicity.  相似文献   

2.
Roles of Rho-family GTPases in cell polarisation and directional migration   总被引:21,自引:0,他引:21  
Polarised cell migration is a tightly regulated process that occurs in tissue development, chemotaxis and wound healing. Rho-family GTPases, including Cdc42, Rac1 and RhoA, play a central role in establishing cell polarisation, which requires asymmetric and ordered distribution of the signalling molecules and the cytoskeleton. Recent advances reveal that Rho GTPases, together with phosphatidylinositol 3-kinase, contribute to asymmetric phosphatidylinositol 3,4,5-trisphosphate distribution via a positive-feedback loop. Phosphatidylinositol 3,4,5-trisphosphate thereby activates the signalling cascades to the cytoskeleton as a second messenger. Rho GTPases also capture and stabilise microtubules through their effectors (e.g. IQGAP1, mDia and Par6) near the cell cortex, leading to polarised cell morphology and directional cell migration. Thus, elucidation of the signal transduction cascades from receptors to Rho GTPases and, subsequently, from Rho GTPases to microtubules has begun.  相似文献   

3.
Regulation of cell polarity is an important biological event that governs diverse cell functions such as localization of embryonic determinants and establishment of tissue and organ architecture. The Rho family GTPases and the polarity complex Par6/Par3/atypical protein kinase C (PKC) play a key role in the signaling pathway, but the molecules that regulate upstream signaling are still not known. Here we identified the guanine nucleotide exchange factor ECT2 as an activator of the polarity complex. ECT2 interacted with Par6 as well as Par3 and PKCzeta. Coexpression of Par6 and ECT2 efficiently activated Cdc42 in vivo. Overexpression of ECT2 also stimulated the PKCzeta activity, whereas dominant-negative ECT2 inhibited the increase in PKCzeta activity stimulated by Par6. ECT2 localization was detected at sites of cell-cell contact as well as in the nucleus of MDCK cells. The expression and localization of ECT2 were regulated by calcium, which is a critical regulator of cell-cell adhesion. Together, these results suggest that ECT2 regulates the polarity complex Par6/Par3/PKCzeta and possibly plays a role in epithelial cell polarity.  相似文献   

4.
Two poles and a compass   总被引:14,自引:0,他引:14  
Meili R  Firtel RA 《Cell》2003,114(2):153-156
Rho GTPases control fundamental aspects of neutrophil chemotaxis: establishment of front and back and orientation toward the chemoattractant. Two reports in this issue show that activated Cdc42 at the leading edge helps orient the cell's axis in a signaling complex with G beta gamma, PAK1, and PIX alpha; while Rho, activated via G alpha 13, mediates formation of the uropod, which then interacts by mutual negative feedback with the front to reinforce polarization (Li et al., 2003 [this issue of Cell]; Xu et al., [this issue of Cell]).  相似文献   

5.
6.
Temporal and spatial regulation of membrane-trafficking events is crucial to both membrane identity and overall cell polarity. Small GTPases of the Rab, Ral and Rho protein families have been implicated as important regulators of vesicle docking and fusion events. This review focuses on how these GTPases interact with the exocyst complex, which is a multisubunit tethering complex involved in the regulation of cell-surface transport and cell polarity. The Rab and Ral GTPases are thought to function in exocyst assembly and vesicle-tethering processes, whereas the Rho family GTPases seem to function in the local activation of the exocyst complex to facilitate downstream vesicle-fusion events. The localized activation of the exocyst by Rho GTPases is likely to have an important role in spatial regulation of exocytosis.  相似文献   

7.
Arimura N  Kaibuchi K 《Neuron》2005,48(6):881-884
Neurons are highly polarized cells, most of which develop a single axon and several dendrites. These two compartments acquire specific characteristics that enable neurons to transmit intercellular signals from several dendrites to an axon. A wealth of recent studies has shown that PI 3-kinase, Rho family GTPases, the Par complex, and cytoskeleton-related proteins participate in the initial events of neuronal polarization. Here, we review the role of polarity-regulating molecules and the potential mechanisms underlying the specification of an axon and dendrites.  相似文献   

8.
Cell movement is driven by the coordinated regulation of cytoskeletal reorganization through Rho GTPases downstream of integrin and growth-factor receptor signaling. We have reported that mDia, a target protein of Rho, interacts with Src and DIP. Here we show that DIP binds to p190RhoGAP and Vav2, and that DIP is phosphorylated by Src and mediates the phosphorylation of p190RhoGAP and Vav2 upon EGF stimulation. When endogenous DIP was inhibited by expressing dominant-negative mutants of DIP or siRNA, phosphorylation of p190RhoGAP and Vav2 upon EGF stimulation was diminished, and EGF-induced actin organization, distribution of p190RhoGAP and Vav2, and cell movement were affected. Therefore, DIP seems to transfer the complex of the three proteins from cytosol to beneath the membrane, and the three proteins, in turn, can be phosphorylated by Src. DIP inactivated Rho and activated Rac following EGF stimulation in the membrane fraction. Thus, DIP acts as a regulatory molecule causing Src kinase-dependent feedback modulation of Rho GTPases downstream of Rho-mDia upon EGF stimulation, and plays an important role in cell motility.  相似文献   

9.
Rho GTPases regulate a wide variety of cellular processes, ranging from actin cytoskeleton remodeling to cell cycle progression and gene expression. Cell surface receptors act through a complex regulatory molecular network that includes guanine exchange factors (GEFs), GTPase activating proteins, and guanine dissociation inhibitors to achieve the coordinated activation and deactivation of Rho proteins, thereby controlling cell motility and ultimately cell fate. Here we found that a member of the RGL-containing family of Rho guanine exchange factors, PDZ RhoGEF, which, together with LARG and p115RhoGEF, links the G(12/13) family of heterotrimeric G proteins to Rho activation, binds through its C-terminal region to the serine-threonine kinase p21-activated kinase 4 (PAK4), an effector for Cdc42. This interaction results in the phosphorylation of PDZ RhoGEF and abolishes its ability to mediate the accumulation of Rho-GTP by Galpha13. Moreover, when overexpressed, active PAK4 was able to dramatically decrease Rho-GTP loading in vivo and the formation of actin stress fibers in response to serum or LPA stimulation. Together, these results provide evidence that PAK4 can negatively regulate the activation of Rho through a direct protein-protein interaction with G protein-linked Rho GEFs, thus providing a novel potential mechanism for cross-talk among Rho GTPases.  相似文献   

10.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

11.
目的:观察ω-3多不饱和脂肪酸(ω-3 Polyunsaturated fatty acid,ω-3 PUFA)对人前列腺癌PC-3细胞和乳腺癌MDA-MB-231细胞Rho蛋白翻译后修饰的影响。方法:60μmol/L的二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahex-aenoic acid,DHA)处理PC-3和MDA-MB-231细胞24h后,检测EPA和DHA对法尼基蛋白转移酶活性的影响,对Rho蛋白的法尼基化修饰的影响,对Rho蛋白与GTP结合能力的影响。结果:EPA及DHA均能显著下调PC-3和MDA-MB-231细胞法尼基蛋白转移酶活性(P<0.01),抑制Rho蛋白(RhoA、Rac1、Rac2和Cdc42)的法尼基化修饰(P<0.01),并降低PC-3细胞Rho蛋白(RhoA、Rac1和Cdc42)与GTP的结合能力(P<0.05)。结论:ω-3 PUFA可能通过抑制肿瘤细胞Rho蛋白翻译后修饰,而影响肿瘤细胞的生物学特性。  相似文献   

12.
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.  相似文献   

13.
Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein–protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle. The activation of Rho GTPases is mediated by a large and diverse family of proteins; the guanine nucleotide exchange factors (RhoGEFs). GEFs work immediately upstream of Rho proteins to provide a direct link between Rho activation and cell–surface receptors for various cytokines, growth factors, adhesion molecules, and G protein-coupled receptors. The regulated targeting and activation of RhoGEFs is essential to coordinate the migratory process. In this review, we summarize the recent advances in our understanding of the role of RhoGEFs in the regulation of cell migration.  相似文献   

14.
Integrins and Rho family GTPases function coordinately to mediate adhesion-dependent events in cells. Recently, it has also become apparent that integrins regulate Rho GTPases and vice versa. Integrins and GTPases might therefore be organized into complex signaling cascades that regulate cell behavior.  相似文献   

15.
The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3beta homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.  相似文献   

16.
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.  相似文献   

17.
The Rho guanosine triphosphatases (GTPases) control cell shape and motility and are frequently overexpressed during malignant growth. These proteins act as molecular switches cycling between active GTP- and inactive GDP-bound forms. Despite being membrane anchored via their isoprenylated C termini, Rho GTPases rapidly translocate between membrane and cytosolic compartments. Here, we show that the Rho GTPase Rac1 preferentially interacts with phosphatidylserine (PS)-containing bilayers through its polybasic motif (PBM). Rac1 isoprenylation contributes to membrane avidity but is not critical for PS recognition. The similar protein Cdc42 (cell division cycle 42), however, only associates with PS when prenylated. Conversely, other Rho GTPases such as Rac2, Rac3, and RhoA do not bind to PS even when they are prenylated. Cell stimulation with PS induces translocation of Rac1 toward the plasma membrane and stimulates GTP loading, membrane ruffling, and filopodia formation. This stimulation also promotes Cdc42 activation and phosphorylation of mitogen-activated protein kinase through Rac1/PS signaling. Consequently, the PBM specifically directs Rac1 to effect cytoskeletal rearrangement and cell migration by selective membrane phospholipid targeting.  相似文献   

18.
Cell volume recovery in response to swelling requires reorganization of the cytoskeleton and fluid efflux. We have previously shown that electrolyte and fluid efflux via K+ and Cl- channels is controlled by swelling-induced activation of phospholipase Cgamma (PLCgamma). Recently, integrin engagement has been suggested to trigger responses to swelling through activation of Rho family GTPases and Src kinases. Because both PLCgamma and Rho GTPases can be regulated by Src during integrin-mediated cytoskeletal reorganization, we sought to identify swelling-induced Src effectors. Upon hypotonic challenge, Src was rapidly activated in transient plasma membrane protrusions, where it colocalized with Vav, an activator of Rho GTPases. Inhibition of Src with PP2 attenuated phosphorylation of Vav. PP2 also attenuated phosphorylation of PLCgamma, and inhibited swelling-mediated activation of K+ and Cl- channels and cell volume recovery. These findings suggest that swelling-induced Src regulates cytoskeletal dynamics, through Vav, and fluid efflux, through PLCgamma, and thus can coordinate structural reorganization with fluid balance to maintain cellular integrity.  相似文献   

19.
The epithelial cadherin (E-cadherin)-catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell's apical-basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling.  相似文献   

20.
Dvorsky R  Ahmadian MR 《EMBO reports》2004,5(12):1130-1136
The signalling functions of Rho-family GTPases are based on the formation of distinctive protein-protein complexes. Invaluable insights into the structure-function relationships of the Rho GTPases have been obtained through the resolution of several of their structures in complex with regulators and downstream effectors. In this review, we use these complexes to compare the binding and specificity-determining sites of the Rho GTPases. Although the properties that characterize these sites are diverse, some fundamental conserved principles that govern their intermolecular interactions have emerged. Notably, all of the interacting partners of the Rho GTPases, irrespective of their function, bind to a common set of conserved amino acids that are clustered on the surface of the switch regions. This conserved region and its specific structural characteristics exemplify the convergence of the Rho GTPases on a consensus binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号