首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) is widely used as a redox cycler to stimulate superoxide production in organisms, cells, and mitochondria. This superoxide production causes extensive mitochondrial oxidative damage, however, there is considerable uncertainty over the mitochondrial sites of paraquat reduction and superoxide formation. Here we show that in yeast and mammalian mitochondria, superoxide production by paraquat occurs in the mitochondrial matrix, as inferred from manganese superoxide dismutase-sensitive mitochondrial DNA damage, as well as from superoxide assays in isolated mitochondria, which were unaffected by exogenous superoxide dismutase. This paraquat-induced superoxide production in the mitochondrial matrix required a membrane potential that was essential for paraquat uptake into mitochondria. This uptake was of the paraquat dication, not the radical monocation, and was carrier-mediated. Experiments with disrupted mitochondria showed that once in the matrix paraquat was principally reduced by complex I (mammals) or by NADPH dehydrogenases (yeast) to form the paraquat radical cation that then reacted with oxygen to form superoxide. Together this membrane potential-dependent uptake across the mitochondrial inner membrane and the subsequent rapid reduction to the paraquat radical cation explain the toxicity of paraquat to mitochondria.  相似文献   

2.
Human peroxiredoxin 5 is a recently discovered mitochondrial, peroxisomal and cytosolic thioredoxin peroxidase able to reduce hydrogen peroxide and alkyl hydroperoxides. To gain insight into peroxiredoxin 5 antioxidant role in cell protection, we investigated the resistance of yeast cells expressing human peroxiredoxin 5 in mitochondria or in the cytosol against oxidative stress induced by paraquat. The herbicide paraquat is a redox active drug known to generate superoxide anions in mitochondria and the cytosol of yeast and mammalian cells leading to the formation of several reactive oxygen species. Here, we report that mitochondrial and cytosolic human peroxiredoxin 5 protect yeast cells from cytotoxicity and lipid peroxidation induced by paraquat.  相似文献   

3.
Paraquat herbicide is toxic to animals, including humans, via putative toxicity mechanisms associated to microsomal and mitochondrial redox systems. It is also believed to act in plants by generating highly reactive oxygen free radicals from electrons of photosystem I on exposure to light. Paraquat also acts on non-chlorophyllous plant tissues, where mitochondria are candidate targets, as in animal tissues. Therefore, we compared the interaction of paraquat with the mitochondrial bioenergetics of potato tuber, using rat liver mitochondria as a reference. Paraquat depressed succinate-dependent mitochondrial Delta(psi), with simultaneous stimulation of state 4 O2 consumption. It also induced a slow time-dependent effect for respiration of succinate, exogenous NADH, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD)/ascorbate, which was more pronounced in rat than in potato mitochondria. However, with potato tuber mitochondria, the Delta(psi) promoted by complex-I-dependent respiration is insensitive to this effect, indicating a protection against paraquat radical afforded by complex I redox activity, which was just the reverse of to the findings for rat liver mitochondria. The experimental set up with the tetraphenyl phosphonium (TPP+)-electrode also indicated production of the paraquat radical in mitochondria, also suggesting its accessibility to the outside space. The different activities of protective antioxidant agents can contribute to explain the different sensitivities of both kinds of mitochondria. Values of SOD activity and alpha-tocopherol detected in potato mitochondria were significantly higher than in rat mitochondria, which, in turn, revealed higher values of lipid peroxidation induced by paraquat.  相似文献   

4.
5.
Paraquat exerted a progressively more pronounced bacteriostatic effect on Escherichia coli as its concentration was raised in the range 0–1.0 μM. In contrast, concentrations of 100 μM or greater were required before significant lethality could be observed. This bacteriostatic effect of paraquat could be eliminated by supplementation of the glucose-plus-salts medium with either yeast extract or a casein hydrolysate. This protection was seen whether the supplement was added a few minutes prior to or following the addition of paraquat and was thus not due to the inhibition of active uptake of paraquat by the cells. The lethal effect of high levels of paraquat was not influenced by supplementation of the medium with yeast extract. It follows that the bacteriostatic and lethal effects of paraquat involve attack upon distinct targets within the cell.  相似文献   

6.
Human manganese superoxide dismutase (Sod2p) has been expressed in yeast and the protein purified from isolated yeast mitochondria, yielding both the metallated protein and the less stable apoprotein in a single chromatographic step. At 30 °C growth temperature, more than half of the purified enzyme is apoprotein that can be fully activated following reconstitution, while the remainder contains a mixture of manganese and iron. In contrast, only fully metallated enzyme was isolated from a similarly constructed yeast strain expressing the homologous yeast manganese superoxide dismutase. Both the manganese content and superoxide dismutase activity of the recombinant human enzyme increased with increasing growth temperatures. The dependence of in vivo metallation state on growth temperature resembles the in vitro thermal activation behavior of human manganese superoxide dismutase observed in previous studies. Partially metallated human superoxide dismutase is fully active in protecting yeast against superoxide stress produced by addition of paraquat to the growth medium. However, a splice variant of human manganese superoxide dismutase (isoform B) is expressed as insoluble protein in both Escherichia coli and yeast mitochondria and did not protect yeast against superoxide stress.  相似文献   

7.
Paraquat is a highly toxic quaternary nitrogen herbicide capable of increasing superoxide anion production. The aim of this research was to evaluate various behavioral changes and study cortical, hippocampal, and striatal mitochondrial function in an experimental model of paraquat toxicity in rats. Paraquat (10 mg/kg ip) was administered weekly for a month. Anxiety-like behavior was evidenced in the paraquat-treated group as shown by a diminished time spent in, and fewer entries into, the open arms of an elevated-plus maze. Also, paraquat treatment induced a deficit in the sense of smell. In biochemical assays, NADH-cytochrome c reductase activity was significantly inhibited by 25 and 34% in cortical and striatal submitochondrial membranes, respectively. Striatal cytochrome oxidase activity was decreased by 24% after paraquat treatment. Also, cortical and striatal mitochondria showed 55 and 74% increased State 4 respiratory rates, respectively. Paraquat treatment decreased striatal State 3 oxygen consumption by 33%. Respiratory controls were markedly decreased in cortical and striatal mitochondria, indicating mitochondrial dysfunction after paraquat treatment, together with mitochondrial depolarization and increased hydrogen peroxide production rates. We demonstrate that paraquat induced alterations in nonmotor symptoms and cortical and striatal mitochondrial dysfunction.  相似文献   

8.
Exposure of cells to paraquat leads to production of superoxide anion (O2*-). This reacts with hydrogen peroxide to give the hydroxyl radical (*OH), leading to lipid peroxidation and cell death. In this study, we investigated the effects of cellular prion protein (PrPC) overexpression on paraquat-induced toxicity by using an established model system, rabbit kidney epithelial A74 cells, which express a doxycycline-inducible murine PrPC gene. PrPC overexpression was found to significantly reduce paraquat-induced cell toxicity, DNA damage, and malondialdehyde acid levels. Superoxide dismutase (total SOD and CuZn-SOD) and glutathione peroxidase activities were higher in doxycycline-stimulated cells. Our findings clearly show that PrPC overexpression plays a protective role against paraquat toxicity, probably by virtue of its superoxide dismutase-like activity.  相似文献   

9.
Mitochondria form a reticulum network dynamically fuse and divide in the cell. The balance between mitochondria fusion and fission is correlated to the shape, activity and integrity of these pivotal organelles. Resveratrol is a polyphenol antioxidant that can extend life span in yeast and worm. This study examined mitochondria dynamics in replicative senescent yeast cells as well as the effects of resveratrol on mitochondria fusion and fission. Collecting cells by biotin-streptavidin sorting method revealed that majority of the replicative senescent cells bear fragmented mitochondrial network, indicating mitochondria dynamics favors fission. Resveratrol treatment resulted in a reduction in the ratio of senescent yeast cells with fragmented mitochondria. The readjustment of mitochondria dynamics induced by resveratrol likely derives from altered expression profiles of fusion and fission genes. Our results demonstrate that resveratrol serves not only as an antioxidant, but also a compound that can mitigate mitochondria fragmentation in replicative senescent yeast cells.  相似文献   

10.
Generation and enhanced detoxification of toxic free radicals by glutathione peroxidase and glutathione transferase in human breast tumor cells have been suggested to play an important role in toxicity and in resistance to adriamycin. We have examined the biochemical basis of paraquat-induced free radical formation and the mechanism of resistance to this agent in human breast tumor cell lines. We have also compared the similarities and differences between adriamycin and paraquat in their mode of free radical formation and tumor cell kill. Anaerobic incubation of paraquat resulted in the formation of the paraquat cation radical in both the sensitive and resistant cells which increased with time and was enhanced by NADPH addition. Our studies show that while both adriamycin and paraquat form hydroxyl radicals (.OH) in these cell lines, adriamycin was 2-3 fold better at reducing oxygen. The formation of .OH was inhibited by exogenously added superoxide dismutase and catalase, indicating the involvement of both superoxide anion radical and hydrogen peroxide. In the adriamycin-resistant cell line, less .OH was formed by each of these drugs. While the .OH appeared to be formed outside by both adriamycin and paraquat in the drug-sensitive cells, experiments using chromium oxalate as a spin-broadening agent suggest that the drug-induced .OH formation in the resistant cells is an intracellular event. The adriamycin-resistant cell line was also cross-resistant to paraquat, suggesting a common mechanism of toxicity for both drugs. However, adriamycin was significantly more toxic (4000-times) to the sensitive cells suggesting that either other mechanisms or site-specific free radical formation are also important in biochemical mechanisms of adriamycin toxicity.  相似文献   

11.
alpha-Synuclein is one of the principal toxic triggers of Parkinson disease, an age-associated neurodegeneration. Using old yeast as a model of alpha-synuclein expression in post-mitotic cells, we show that alpha-synuclein toxicity depends on chronological aging and results in apoptosis as well as necrosis. Neither disruption of key components of the unfolded protein response nor deletion of proapoptotic key players (including the yeast caspase YCA1, the apoptosis-inducing factor AIF1, or the serine protease OMI) did prevent alpha-synuclein-induced cell killing. However, abrogation of mitochondrial DNA (rho(0)) inhibited alpha-synuclein-induced reactive oxygen species formation and subsequent apoptotic cell death. Thus, introducing an aging yeast model of alpha-synuclein toxicity, we demonstrate a strict requirement of functional mitochondria.  相似文献   

12.
Pulmonary fibrosis is one of the most severe consequences of exposure to paraquat, an herbicide that causes rapid alveolar inflammation and epithelial cell damage. Paraquat is known to induce toxicity in cells by stimulating oxygen utilization via redox cycling and the generation of reactive oxygen intermediates. However, the enzymatic activity mediating this reaction in lung cells is not completely understood. Using self-referencing microsensors, we measured the effects of paraquat on oxygen flux into murine lung epithelial cells. Paraquat (10-100 microm) was found to cause a 2-4-fold increase in cellular oxygen flux. The mitochondrial poisons cyanide, rotenone, and antimycin A prevented mitochondrial- but not paraquat-mediated oxygen flux into cells. In contrast, diphenyleneiodonium (10 microm), an NADPH oxidase inhibitor, blocked the effects of paraquat without altering mitochondrial respiration. NADPH oxidases, enzymes that are highly expressed in lung epithelial cells, utilize molecular oxygen to generate superoxide anion. We discovered that lung epithelial cells possess a distinct cytoplasmic diphenyleneiodonium-sensitive NAD(P)H:paraquat oxidoreductase. This enzyme utilizes oxygen, requires NADH or NADPH, and readily generates the reduced paraquat radical. Purification and sequence analysis identified this enzyme activity as thioredoxin reductase. Purified paraquat reductase from the cells contained thioredoxin reductase activity, and purified rat liver thioredoxin reductase or recombinant enzyme possessed paraquat reductase activity. Reactive oxygen intermediates and subsequent oxidative stress generated from this enzyme are likely to contribute to paraquat-induced lung toxicity.  相似文献   

13.
Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity.  相似文献   

14.
The toxicity of paraquat is due to the oxygen-derived radicals formed by the reaction of oxygen with bipyridylium radical cations. Although paraquat is known to cause lung toxicity, the related bipyridylium compounds such as diquat and morfamquat do not affect the lung as seriously, but rather cause liver toxicity. Paraquat, diquat, morfamquat, and benzyl viologen are reduced by rat hepatocytes to their respective radical cations. An intracellular component of the signal was detected from diquat and benzyl viologen radical cations. These radical cations generated inside the cell can cross the plasma membrane. Generation of the diquat radical cation by hepatocytes is not affected by the inhibition of cytochrome P-450 by carbon monoxide or metyrapone, suggesting that this enzyme is probably not involved in the reduction of diquat as had been proposed previously. The reduction of paraquat is generally attributed to NADPH-cytochrome P-450 reductase, and presumably diquat is also reduced by this flavoprotein. Some transition metal chelates such as ferric diethylenetriaminepentaacetic acid delay the detection of the diquat radical cation. This may be due to the reduction of the ferric chelate by the diquat radical cation resulting in the formation of the ferrous chelate and the parent bipyridylium dication. When all the ferric chelate has been reduced to the ferrous chelate, then the bipyridylium radical can be detected. Alternatively, if the ferric chelate enters the cell, it can compete with the parent bipyridylium dication for the reductase, which would also lead to delayed detection.  相似文献   

15.
Escherichia coli endonuclease III (endo III) is the key repair enzyme essential for removal of oxidized pyrimidines and abasic sites. Although two homologues of endo III, Ntgl and Ntg2, were found in Saccharomyces cerevisiae, they do not significantly contribute to repair of oxidative DNA damage in vivo. This suggests that an additional activity(ies) or a regulatory pathway(s) involved in cellular response to oxidative DNA damage may exist in yeast. The pso3-1 mutant of S. cerevisiae was previously shown to be specifically sensitive to toxic effects of hydrogen peroxide (H2O2) and paraquat. Here, we show that increased DNA double strand breakage is very likely the basis of sensitivity of the pso3-1 mutant cells to H2O2. Our results, thus, indicate an involvement of the Pso3 protein in protection of yeast cells from oxidative stress presumably through its ability to prevent DNA double strand breakage. Furthermore, complementation of the repair defects of the pso3-1 mutant cells by E. coli endo III has been examined. It has been found that expression of the nth gene in the pso3-1 mutant cells recovers survival, decreases mutability and protects yeast genomic DNA from breakage following H2O2 treatment. This might suggest some degree of functional similarity between Pso3 and Nth.  相似文献   

16.
The use of a cyanine dye in measuring membrane potential in yeast   总被引:5,自引:0,他引:5  
An attempt was made to use 3,3'-dipropylthiacarbocyanine as a membrane potential probe in yeast by following both its fluorescence changes and its uptake by the cells under different conditions. It was found that the uptake of the dye into the cytoplasmic compartment was translated into an increased fluorescence, and the uptake by the mitochondria produced a quenching of the fluorescence. The experiments to measure uptake showed that a large amount of the dye was taken up by the cells under "deenergized" conditions. The uptake of the cyanine, however, was significantly reduced by the omission of the substrate, by deenergization of the mitochondria, or by the addition of K+, but not by Na+. This cyanine seems to be a good, qualitative indicator of the potential of the plasma membrane and of the mitochondria of the cells, with a faster response than those probes used before in yeast.  相似文献   

17.
We have examined the effect of difluoromethylornithine on the ability of B16 melanoma cells to take up putrescine and the 4,4'-dipyridyl herbicide paraquat. Pretreatment with difluoromethylornithine for 24 hr enhanced putrescine uptake by inducing the maximum capacity of the transport system without affecting the Km for the substrate. Paraquat uptake was minor compared with that of putrescine and was not affected by difluoromethylornithine. Neither putrescine, spermidine or spermine at concentrations up to 100 microM inhibited the accumulation of paraquat. However, paraquat competitively inhibited putrescine transport (Ki = 54 +/- 10 microM). Exposure of the B16 melanoma cells for 24 hr to increasing concentrations of paraquat produced a dose-dependent inhibition of DNA synthesis. Difluoromethylornithine pretreatment did not affect paraquat toxicity. These data show that paraquat is not taken up into B16 melanoma cells by the uptake system responsible for transporting putrescine. Moreover, it is likely that the difluoromethylornithine inducible polyamine transport system in B16 melanoma cells is characteristically different to that previously described in normal mammalian lung since the latter is reportedly capable of transporting both putrescine and paraquat.  相似文献   

18.
In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called "petite-mutant" phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS.  相似文献   

20.
《Free radical research》2013,47(8):614-623
Abstract

Paraquat is a highly toxic herbicide capable of generating oxidative stress and producing brain damage after chronic exposure. The aim of this research was to investigate the contribution of mitochondria to the molecular mechanism of apoptosis in an in vivo experimental model of paraquat neurotoxicity. Sprague-Dawley adult female rats received paraquat (10 mg/kg i.p.) or saline once a week during a month. Paraquat treatment increased cortical and striatal superoxide anion levels by 45% and 18%, respectively. As a consequence, mitochondrial aconitase activity was significantly inhibited in cerebral cortex and striatum. Paraquat treatment increased cortical and striatal lipid peroxidation levels by 16% and 28%, respectively, as compared with control mitochondria Also, cortical and striatal cardiolipin levels were decreased by 13% and 49%, respectively. Increased Bax and Bak association to mitochondrial membranes was observed after paraquat treatment in cerebral cortex and striatum. Also, paraquat induced cytochrome c and AIF release from mitochondria.

These findings support the conclusion that a weekly dose of paraquat during four weeks induces oxidative damage that activates mitochondrial pathways associated with molecular mechanisms of cell death. The release of apoptogenic proteins from mitochondria to cytosol after paraquat treatment would be the consequence of an alteration in mitochondrial membrane permeability due to the presence of high superoxide anion levels. Also, our results suggest that under chronic exposure, striatal mitochondria were more sensitive to paraquat oxidative damage than cortical mitochondria. Even in the presence of a high oxidative stress in striatum, equal levels of apoptosis were attained in both brain areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号