首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialic acids present on human colonic mucins are highly O-acetylated, however, little is known about the underlying enzymatic activity required for O-acetylation in this tissue. Here we report on the substrate specificity, subcellular localization and characterization of the sialate-7(9)-O-acetyltransferase in normal human colonic mucosa. Using CMP-Neu5Ac, the most efficient acceptor substrate of all those tested, the enzymatic activity was found to be optimal at 37 degrees C, with a pH optimum of 7.0. Activity was also found to be dependent on protein, CMP-Neu5Ac (Km: 59.2 microM) and AcCoA (Km: 6.1 microM) concentrations, as well as membrane integrity. The enzyme's activity could be inhibited by CoA with a Ki of 11.9 microM. In addition, enzymatic activity was found to be localized in the Golgi-enriched membrane fraction. The nature of the O-acetylated products formed were verified with the aid of chromatographic and enzymatic techniques. The main product was 9-O-acetylated Neu5Ac, with a significant amount of oligo-O-acetylated Neu5Ac also being detected. The utilization of CMP-Neu5Ac as the acceptor substrate was confirmed by the isolation and characterization of the putative product, CMP-Neu5,9Ac2, using ion-exchange chromatography. The ability of CMP-Neu5,9Ac2 to act as a sialic acid donor for sialyltransferases represents the conclusive demonstration for the formation of CMP-Neu5,9Ac2.  相似文献   

2.
3.
Ornithine transcarbamylase, the enzyme which catalyzes the formation of citrulline from ornithine and carbamoylphosphate, has been purified from guinea pig liver. By the procedure indicated in the present paper a 200 fold purification of the enzyme has been achieved. Using both the purified fraction and the crude extract, a parallel determination of some physicochemical properties has been carried out. The pH of maximal activity of OTC was 7.8 for both preparations. The maximal stability of the enzyme with respect of pH showed a plateau over the range of pH 7 to 9.5 in the purified fraction, whereas the crude extract exhibited a major stability which lay between pH and 10. Both OTC preparations showed similar behavior regarding thermal stability, the enzyme being still active at a 50 degrees C temperature. The values of the apparent Km's proved to be 4.4 mM for the substrate ornithine and 5 mM for carbamoylphosphate.  相似文献   

4.
The peroxisomal acyl/alkyl dihydroxyacetone-phosphate reductase (EC 1.1.1.101) was solubilized and purified 5500-fold from guinea pig liver. The enzyme could be solubilized by detergents only at high ionic strengths in presence of the cosubstrate NADPH. Peroxisomes, isolated from liver by a Nycodenz step density gradient centrifugation, were first treated with 0.2% Triton X-100 to remove the soluble and a large fraction of the membrane-bound proteins. The enzyme was solubilized from the resulting residue by 0.05% Triton X-100, 1 M KCl, 0.3 mM NADPH, and 2 mM dithiothreitol in Tris-HCl buffer (10 mM) at pH 7.5. The enzyme was further purified after precipitating it by dialyzing out the KCl and then resolubilized with 0.8% octyl glucoside in 1 M KCl (plus NADPH and dithiothreitol). The second solubilized enzyme was purified to homogeneity (370-fold from peroxisomes) by gel filtration in a Sepharose CL-6B column followed by affinity chromatography on an NADPH-agarose gel matrix. NADPH-agarose was prepared by reacting periodate-oxidized NADP+ to adipic acid dihydrazide-agarose and then reducing the immobilized NADP+ with NaBH4. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme showed a single homogeneous band with an apparent molecular weight of 60,000. The molecular weight of the native enzyme was estimated to be 75,000 by size exclusion chromatography. Amino acid analysis of the purified protein showed that hydrophobic amino acid comprised 27% of the molecule. The Km value of the purified enzyme for hexadecyldihydroxyacetone phosphate (DHAP) was 21 microM, and the Vmax value in the presence of 0.07 mM NADPH was 67 mumol/min/mg. The turnover number (Kcat), after correcting for the isotope effect of the cosubstrate NADP3H, was calculated to be 6,000 mol/min/mol of enzyme, assuming the enzyme has a molecular weight of 60,000. The purified enzyme also used palmitoyldihydroxyactone phosphate as a substrate (Km = 15.4 microM, and Vmax = 75 mumol/min/mg). Palmitoyl-DHAP competitively inhibited the reduction of hexadecyl-DHAP, indicating that the same enzyme catalyzes the reduction of both acyl-DHAP and alkyl-DHAP. NADH can substitute for NADPH, but the Km of the enzyme for NADH (1.7 mM) is much higher than that for NADPH (20 microM). The purified enzyme is competitively (against NADPH) inhibited by NADP+ and palmitoyl-CoA. The enzyme is stable on storage at 4 degrees C in the presence of NADPH and dithiothreitol.  相似文献   

5.
The amino acid composition, and the absorption, circular dichroism (CD) and magnetic circular dichroism spectra of a metalloprotein induced in the livers of guinea pigs by the injection of CdCl2 are reported. The amino acid composition of this protein closely resembles that of rat liver metallothionein (MT). We show that this protein has spectroscopic properties that closely follow the behaviour previously reported for several other cadmium-containing metallothioneins in its spectral response to changes in pH, and to the addition of cadmium and copper(I). Dramatic changes are observed in the CD spectrum during the addition of copper(I); it is suggested that these changes are the result of the formation of a mixed Cu(I)/Cd(II) cluster that forms in the α domain once the β domain has been saturated with Cu(I). These results are of particular importance in the characterization of this protein as belonging to the metallothionein class of proteins, as spectral changes of this type are directly related to the displacement of Cd2+ and Zn2+ from the two, thiolatecluster binding sites that are amongst the unique properties of mammalian metallothioneins. It is demonstrated that the CD spectrum provides a sensitive indicator of the presence of these special metal binding sites by indicating changes in the binding geometry and stoichiometry in response to an incoming metal. These results indicate that the guinea pig liver metallothionein induced by injections of CdCl2 uses the same α and β type of clusters for cadmium binding as rat liver Cd, Zn-MT, even though there are minor differences in the amino acid composition between the guinea pig and rat liver proteins.  相似文献   

6.
Isolation of two L-asparaginases from guinea pig liver   总被引:1,自引:0,他引:1  
W S Matthews  H D Brown 《Enzyme》1974,17(5):276-286
  相似文献   

7.
NADPH-dependent enzymatic reduction of aromatic aldehydes and ketones observed in the cytosol of guinea pig liver was mediated by at least three distinct reductases (AR 1, AR 2, and AR 3), which were separated by DEAE-cellulose chromatography. By several procedures AR 2 and AR 3 were purified to homogeneity, but AR 1 could be purified only 30-fold because of the small amount. These enzymes were found to have similar molecular weights of 34,000 to 36,000 and similar Stokes radii of about 2.5 nm. AR 3 was identical to aldehyde reductase [EC 1.1.1.2] in substrate specificity for aromatic aldehydes and D-glucuronate and specific inhibition by barbiturates. AR 1 and AR 2 acted on aromatic ketones and cyclohexanone as well as aromatic aldehydes at optimal pHs of 5.4 and 6.0, respectively, and were immunochemically distinguished from AR 3. AR 1 was the most sensitive to sulfhydryl reagents, and AR 2 was more stable at 50 degrees C than the other enzymes. Similar heterogeneity was observed in the kidney enzymes, but other tissues had little aldehyde reductase activity and contained only AR 3. In addition, lung contained a high molecular weight aromatic ketone reductase different from the above reductases.  相似文献   

8.
An (ADP-ribose)n glycohydrolase has been purified more than 3,000-fold from guinea pig liver nuclei with an 18% yield. The glycohydrolase activity present in the nuclei was solubilized only by sonication at high ionic strength and purified by sequential chromatographic steps on phosphocellulose, DEAE-cellulose, Blue Sepharose, and single-stranded DNA cellulose. The purified protein exhibited one predominant protein band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 75,500. On Sephadex G-100 gel filtration, single coincident peaks of (ADP-ribose)n glycohydrolase activity and protein with a molecular weight value of 72,000 were observed. The Km value for (ADP-ribose)n and the maximal velocity of the highly purified glycohydrolase were 2.3 microM and 36 mumol of ADP-ribose released from (ADP-ribose)n . min-1 . mg protein-1, respectively. Hydrolysis of (ADP-ribose)n by the enzyme was exoglycosidic in nature. The optimum pH for the enzyme activity was apparent at 6.8-7.0. Sulfhydryl compounds and monovalent cations were required for the maximal activity. The enzyme was sensitive to Ca2+ but not to Mg2+. The enzyme activity was inhibited by ADP-ribose, cyclic AMP (adenosine 3':5'-monophosphate) and diadenosine 5',5'-p1,p4-tetraphosphate. Denatured DNA and histones were inhibitory, but native DNA and its histone complex were not inhibitory. Our data indicate that the glycohydrolase is present only as a minor protein in nuclei, being present in perhaps about 50,000 molecules/nucleus.  相似文献   

9.
4-Aminobutyrate-transaminase (4-aminobutyrate : 2-oxoglutarate aminotransferase, EC 2.6.1.19) from pig liver has been purified to electrophoretic homogeneity. It has a molecular weight of about 110 000 and is composed of two subunits of the same molecular weight but of different charges. Two forms of pig liver 4-aminobutyrate-transaminase were isolated by DEAE-cellulose chromatography and designated as 4-aminobutyrate-transaminase I and 4-aminobutyrate-transminase II, corresponding to a cationic and anionic form. Some physical and kinetic properties of liver enzyme were compared to those of brain enzyme and no significant differences were found, except for their sedimentation coefficients and the charges of their subunits. The role of 4-aminobutyrate-transaminase in liver remains a matter of speculation, but could be related to a metabolic function.  相似文献   

10.
Four types of glutathione S-transferase were purified to homogeneity from guinea pig liver by DEAE-cellulose, Sephadex G-75, CM-cellulose, and affinity chromatography. These isozymes were named a, b, c, and d based on the reverse order of elution from a CM-cellulose column, and had specific activities of 89.6, 92.2, 99.0, and 44.0 units/mg, respectively, when assayed with 1 mM each of 1-chloro-2,4-dinitrobenzene and reduced glutathione. All four transferases of guinea pig liver were homodimers. The transferases b, c, and d had a similar molecular weight of 50,000 and their subunit sizes were 25,000, but the corresponding values for transferase a were 45,000 and 23,500, respectively. Transferase a was notably different in the activities towards organic hydroperoxides and 1,2-dichloro-4-nitrobenzene from the other isozymes. Transferases a and b, the major forms in guinea pig liver, were studied with respect to their biochemical properties, including kinetic parameters, absorption and fluorescence spectra, and bilirubin binding. Glutathione peroxidase activity of the transferase a was about 100 times higher than that of other isozymes. In guinea pig liver, it is estimated that transferase a is the major glutathione peroxidase, accounting for about 75% of the total organic hydroperoxide reduction.  相似文献   

11.
Leukotriene A4-hydrolase activity in guinea pig and human liver   总被引:3,自引:0,他引:3  
Guinea pig and human liver homogenates transformed leukotriene A4 into leukotriene B4. In both species, the enzymatic activity was recovered in the 105000 X g supernatant, and it was found to be susceptible to heat treatment (56 degrees C, 1 h). Digestion with a proteolytic enzyme also resulted in loss of enzymatic activity. The formation of leukotriene B4 was pH-dependent, with an optimum between pH 7 and pH 8.5. In addition, two other organs from the guinea-pig, lungs and kidneys, contained leukotriene A4-hydrolase activity. The identity of leukotriene B4 was ascertained by high-performance liquid chromatography, ultraviolet spectrometry, gas chromatography-mass spectrometry and bioassay. We have recently demonstrated the presence of leukotriene A4-hydrolase activity in mammalian plasma (Fitzpatrick et al. (1983) Proc. Natl. Acad. Sci. USA 80, 5425-5429). The results of the present study suggest several possible origins of this plasma leukotriene A4 hydrolase.  相似文献   

12.
13.
NADPH-cytochrome P-450 reductase was purified to apparent homogeneity from detergent-solubilized guinea pig liver microsomes. The reductase had a mol. wt of 78,000 and contained one mole each of FAD and FMN. Electron transfer activity to cytochrome c was optimal at a pH of 8.0 and an ionic strength of 0.43. The results of kinetic experiments were consistent with a ternary-complex mechanism for the interaction of the reductase with cytochrome c and NADPH. Km values for NADPH and cytochrome c were 3.1 and 26.7 microM, respectively. Inhibition by NADP+ and 2'-AMP was competitive with respect to NADPH; Ki values were 12.1 microM for NADP+ and 46.7 microM for 2'-AMP.  相似文献   

14.
15.
Formylation of guinea pig liver methionyl-sRNA   总被引:14,自引:0,他引:14  
  相似文献   

16.
Biliverdin reductase of guinea pig liver   总被引:6,自引:0,他引:6  
  相似文献   

17.
4-Aminobutyrate-transaminase (4-aminobutyrate: 2-oxoglutarate amino-transferase, EC 2.6.1.19) from pig liver has been purified to electrophoretic homogeneity. It has a molecular weight of about 110 000 and is composed of two subunits of the same molecular weight but of different charges. Two forms of pig liver 4-aminobutyrate-transaminase were isolated by DEAE-cellulose chromatography and designated as 4-aminobutyrate-transaminase I and 4-aminobutyrate-transaminase II, corresponding to a cationic and anionic form. Some physical and kinetic properties of liver enzyme were compared to those of brain enzyme and no significant difference were found, except for their sedimentation coefficients and the charges of their subunits. The role of 4-aminobutyrate-transaminase in liver remains a matter of speculation, but could be related to a metabolic function.  相似文献   

18.
1. A method is described for the preparation of isolated cells from guinea pig liver. This involved perfusion in situ, in the non-physiological direction, with collagenase. 2. The cell yield was 20--30%, comparable with those from the livers of other species. 3. The ratio of lactate dehydrogenase to glutamate dehydrogenase in the cells was similar to that in vivo, indicating that there was negligible leakage of cytoplasmic enzymes. 4. The concentrations of K+ and adenine nucleotides were initially lower than in the perfused liver; normal values were obtained on incubation, particularly in the presence of substrate. 5. The L-lactate: pyruvate ratio is 16:1, close to established values. The total beta-hydroxybutyrate: acetoacetate ratio indicates that the mitochondrial redox state is more oxidised than in the perfused liver, but the intracellular ratio is similar to that of the intact liver. 6. Rates of gluconeogenesis and ureogenesis, are within the physiological range. Maximal gluconeogeneis from L-lactate was preceded by a lag period. L-lysine stimulated glucose production from L-lactate but did not abolish the lag phase. 7. The effects of aminooxyacetate and octanoate on L-lactate gluconeogenesis were similar to those in the perfused liver.  相似文献   

19.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

20.
1. Galactokinase has been purified from the liver of young pigs by high-speed centrifugation, chromatography on Sephadex G-100 and DEAE-cellulose, and ammonium sulphate fractionation. 2. The enzyme preparation has a specific activity of 10-18mumoles of galactose phosphorylated/mg. of protein/min. at 37 degrees and has been purified 400-fold from the liver supernatant. 3. Purified liver galactokinase has Michaelis constants of 1x10(-4)-3x10(-4)m for galactose and 2x10(-4)m for ATP-Mg(2+), and the enzyme reaction produces equimolar amounts of galactose 1-phosphate and ADP. 4. Galactokinase phosphorylates 2-deoxygalactose and galactosamine in addition to galactose, has a pH optimum of 7.8, a Q(10) of 2, and is stimulated by cysteine and other thiols. 5. With the exception of substrate specificity, the properties of liver galactokinase are similar to galactokinase purified from yeast and Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号