首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sequence homologous to an internal fragment 0.75 kb BstXI of the Pseudomonas syringae pv. syringae hrpZ gene was identified in Pseudomonas syringae pv. aptata NCPPB 2664, the causal agent of bacterial blight in sugar beet, lettuce and other plants, and in E. coli DH10B (pCCP1069) containing the P. syringae pv. aptata hrp gene cluster. PCR with oligonucleotides, based on the hrpZPss gene and used as primers with the total genomic DNA of P. syringae pv. aptata, amplified a 1 kb fragment that hybridized with the probe in highly stringent conditions. The amplicon was cloned into the pGEM-T® plasmid vector, amplified in E. coli DH5 and sequenced. The sequence showed 95%, 83% and 61% identity with those of hrpZPss, hrpZPsg and hrpZPst genes encoding the harpins of the P. syringae pv. syringae, glycinea and tomato, respectively. The amplicon was cloned into the pMAL® expression system. The expressed protein, fused with maltose-binding protein, was cleaved with a specific protease factor Xa, and purified using affinity chromatography. On the basis of the amino acid sequence and its ability to induce HR in tobacco leaves, it was identified as a P. syringae pv. aptata harpin.  相似文献   

2.
Pseudomonas syringae pv. tagetis causes apical chlorosis of several plant species in the Asteraceae, including marigold. As a means to facilitate the isolation of pathogenicity genes and to characterize the genome of this bacterium, we have constructed a bacterial artificial chromosome library of P. syringae pv. tagetis strain LMG5090. The library consists of 1,536 clones with insert size ranging from 30 to 160 kb and an average size of 86 kb. Based upon colony hybridization, the BAC clone 420E23 containing the hrp/hrc gene cluster encoding the type III secretion system was identified from this library and subsequently shotgun sequenced. The hrp/hrc gene cluster of P. syringae pv. tagetis has a 23 kb sequence which contains 27 open reading frames. Comparative analysis of the hrp/hrc gene cluster of P. syringae pv. tagetis LMG5090, P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, and P. syringae pv. phaseolicola 1448A revealed that the entire hrp/hrc gene cluster of P. syringae pv. tagetis is conserved and identically arranged in all four pathovars  相似文献   

3.
Summary Mutants of a tomato strain ofXanthomonas campestris pv.vesicatoria (XCV), causal agent of bacterial spot of tomato and pepper, were produced using the transposon Tn5 carried in the suicide plasmid pGS9. One prototrophic mutant, M461, was isolated which caused no visible reaction on tomato or pepper, but maintained the wild-type ability to induce a hypersensitive reaction (HR) on tobacco. This mutant showed similar growth characteristics to the wild-type in culture, but growth in planta was reduced. A genomic library of wild-type XCV was constructed in the broad host range cosmid vector pLAFR3. Clone p6AD4 restored pathogenicity to M461 on tomato and the ability to induce a HR on pepper. This clone contained ca. 22 kb of XCV DNA. The insertion in M461 was in a site corresponding to a 1.1 kbEcoRI fragment of p6AD4.  相似文献   

4.
Summary The recombinant plasmid pIJ3070 isolated from a genomic library of Xanthomonas campestris pv. campestris constructed in the conjugal cosmid pLAFR3 contains protease gene(s) which can be expressed in Escherichia coli. Tn5 mutagenesis and subcloning revealed that the protease structural gene(s) is(are) located in a ca. 10 kb EcoRI fragment. Several protease-minus mutants of X. c. campestris were obtained by Tn5 mutagenesis of pIJ3070 and marker exchange techniques. Studies of pathogenicity of these Tn5 mutants showed that the protease is not critically important for the pathogenicity of X. c. campestris on turnip plants but may play a minor role in disease development.Abbreviations Gm gentamicin - Km kanamycin - Rif rifampicin - Spc spectinomycin - Sm streptomycin - Tc tetracycline  相似文献   

5.
Summary A group of pathogenicity genes was previously identified in Pseudomonas syringae pv. phaseolicola which controls the ability of the pathogen to cause disease on bean and to elicit the hypersensitive response on non-host plants. These genes, designated hrp, are located in a ca. 20 kb region which was referred to as the hrp cluster. Homologous sequences to DNA segments derived from this region were detected in several pathovars of P. syringae but not in symbiotic, saprophytic or other phytopathogenic bacteria. A Tn5-induced Hrp- mutation was transferred from P. syringae pv. phaseolicola to P. syringae pv. tabaci and to three races of P. syringae pv. glycinea by marker exchange mutagenesis. The resulting progeny were phenotypically Hrp-, i.e. no longer pathogenic on their respective hosts and unable to elicit the hypersensitive response on non-host plants. These mutants were restored to wild-type phenotype upon introduction of a recombinant plasmid carrying the corresponding wild-type locus from P. syringae pv. phaseolicola. The marker exchange mutants of P. syringae pv. glycinea psg0 and Psg5 which carry different avr genes for race specific avirulence did not elicit a hypersensitive response on incompatible soybean cultivars. It appears, therefore, that P. syringae pathovars possess common genes for pathogenicity which also control their interaction with non-host plants. Furthermore, the expression of race/cultivar specific incompatibility of P. syringae pv. glycinea requires a fully functional hrp region in addition to the avr genes which determine avirulence on single-gene differential cultivars of soybean.  相似文献   

6.
Kiba A  Takata O  Ohnishi K  Hikichi Y 《Planta》2006,224(5):981-994
Pseudomonas cichorii causes necrotic leaf spots (NLS), while Pseudomonas syringae pv. tabaci induces a hypersensitive response (HR) in eggplant. P. cichorii induced cell death at 9 h after inoculation (HAI), reaching a maximum of around 24–30 HAI. On the other hand, cell death was induced 6 HAI with P. syringae pv. tabaci, reaching a maximum of around 12–18 HAI. Superoxide generation was observed in eggplant inoculated with both bacteria. DNA fragmentation, cytochrome c release into the cytosol and expression of defense-related genes such as PR-1 and hsr203J was also induced by inoculation with both bacteria, but these plant reactions were more rapidly induced in eggplant inoculated with P. syringae pv. tabaci rather than those with P. cichorii. Lipid peroxidation and induction of lipoxygenase (LOX) was drastically induced in eggplant inoculated with P. syringae pv. tabaci compared to P. cichorii-inoculated eggplant. Pharmacological studies showed that induction of the cell death, and the NLS or the HR in response to both bacteria was commonly associated with de novo protein synthesis, reactive oxygen species and caspase III-like protease. Interestingly, involvement of lipid peroxidation, LOX, serine protease, and DNase differed between induction of NLS and HR. These results suggest that programmed cell death might be closely associated not only with the HR but also NLS. However, there may be differences not only in the induction kinetics and level of plant responses but also in the infection-related responses between HR and NLS.  相似文献   

7.
Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.  相似文献   

8.
Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-component system-defective mutants, ΔgacA and ΔgacS, and a double mutant, ΔgacAΔgacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported in this paper have been submitted to the DDBJ/GenBank/EMBL databank with the accession numbers AB266103, AB266104, AB266105, AB266106, AB266107, AB266108.  相似文献   

9.
Pseudomonas syringae pv. tagetis, a plant pathogen being considered as a biological control agent of Canada thistle (Cirsium arvense), produces tagetitoxin, an inhibitor of RNA polymerase which results in chlorosis of developing shoot tissues. Although the bacterium is known to affect several plant species in the Asteraceae and has been reported in several countries, little is known of its genetic diversity. The genetic relatedness of 24 strains of P. syringae pv. tagetis with respect to each other and to other P. syringae and Pseudomonas savastanoi pathovars was examined using 16S–23S rDNA intergenic spacer (ITS) sequence analysis. The size of the 16S–23S rDNA ITS regions ranged from 508 to 548 bp in length for all 17 P. syringae and P. savastanoi pathovars examined. The size of the 16S–23S rDNA ITS regions for all the P. syringae pv. helianthi and all the P. syringae pv. tagetis strains examined were 526 bp in length. Furthermore, the 16S–23S rDNA ITS regions of both P. syringae pv. tagetis and P. syringae pv. helianthi had DNA signatures at specific nucleotides that distinguished them from the 15 other P. syringae and P. savastanoi pathovars examined. These results provide strong evidence that P. syringae pv. helianthi is a nontoxigenic form of P. syringae pv. tagetis. The results also demonstrated that there is little genetic diversity among the known strains of P. syringae pv. tagetis. The genetic differences that do exist were not correlated with differences in host plant, geographical origin, or the ability to produce toxin.  相似文献   

10.
11.
A cosmid clone isolated from a genomic library of Pseudomonas syringae pv. syringae 61 restored to all Tn5 mutants of this strain studied the ability to elicit the hypersensitive response (HR) in tobacco. Cosmid pHIR11 also enabled Escherichia coli TB1 to elicit an HR-like reaction when high levels of inoculum (10(9) cells per ml) were infiltrated into tobacco leaves. The cosmid, which contains a 31-kilobase DNA insert, was mobilized by triparental matings into Pseudomonas fluorescens 55 (a nonpathogen that normally causes no plant reactions), P. syringae pv. syringae 226 (a tomato pathogen that causes the HR in tobacco), and P. syringae pv. tabaci (a tobacco pathogen that causes the HR in tomato). The plant reaction phenotypes of all of the transconjugants were altered. P. fluorescens(pHIR11) caused the HR in tobacco and tomato leaves and stimulated an apparent proton influx in suspension-cultured tobacco cells that was indistinguishable from the proton influx caused by incompatible pathogenic pseudomonads. P. syringae pv. tabaci(pHIR11) and P. syringae pv. syringae 226(pHIR11) elicited the HR rather than disease symptoms on their respective hosts and were no longer pathogenic. pHIR11 was mutagenized with TnphoA (Tn5 IS50L::phoA). One randomly chosen mutant, pHIR11-18, no longer conferred the HR phenotype to P. fluorescens. The mutation was marker-exchanged into the genomes of P. syringae pv. syringae strains 61 and 226. The TnphoA insertions in the two pseudomonads abolished their ability to elicit any plant reactions in all plants tested. The results indicate that a relatively small portion of the P. syringae genome is sufficient for the elicitation of plant reactions.  相似文献   

12.
The gene encoding K88ab was localized on the 11.6 kbHindIII-HindIII fragment of 74 kb plasmid DNA ofE. coli 7301. The smallest recombinant DNA producing the K88ab antigen was obtained by excision of the 5.15 kbEcoRI-EcoRI fragment from recombinant DNA composed of the 11.6 kb K88ab fragment in the pBR322 vectro. The size of the smallest fragment was 6.5 kb. Expression of the K88ab antigen was controlled by the P1 promoter of the pBR322 vector. Substitution of promoter Ptac for promoter P1 made it possible to achieve expression of the K88ab antigen byE. coli MT. Substitution of promoter PL for promoter P1 failed to achieve expression of the K88 ab antigen in the recipient strains used.  相似文献   

13.
A local strain ofHelicoverpa assulta nucleopolyhedrovirus (HasNPV) was isolated from infectedH. assulta larvae in Korea. Restriction endonuclease fragment analysis, using 4 restriction enzymes, estimated that the total genome size of HasNPV is about 138 kb. A degenerate polymerase chain reaction (PCR) primer set for the polyhedrin gene successfully amplified the partial polyhedrin gene of HasNPV. The sequencing results showed that the about 430 bp PCR product was a fragment of the corresponding polyhedrin gene. Using HasNPV partial predicted polyhedrin to probe the Southern blots, we identified the location of the polyhedrin gene within the 6 kbEcoRI, 15 kbNcoI, 20 kbXhoI, 17 kbBgl II and 3 kbClaI fragments, respectively. The 3 kbClaI fragment was cloned and the nucleotide sequences of the polyhedrin coding region and its flaking regions were determined. Nucleotide sequence analysis indicated the presence of an open reading frame of 735 nucleotides which could encode 245 amino acids with a predicted molecular mass of 29 kDa. The nucleotide sequences within the coding region of HasNPV polyhedrin shared 73.7% identity with the polyhedrin gene fromAutographa californica NPV but were most closely related toHelicoverpa andHeliothis species NPVs with over 99% sequence identity.  相似文献   

14.
Summary Pseudomonas syringae pv. glycinea Race 8 strain PgB3 is naturally resistant to trimethoprim (Tp) at concentrations up to 500 g/ml. A genomic library of total PgB3 DNA was constructed by ligating EcoRI-restricted DNA into the EcoRI site of the cosmid vector, pLAFR1, packaging the DNA in vitro into bacteriophage lambda, and transducing E. coli DH1 cells. Of 960 cosmid clones selected for resistance to tetracycline, six were resistant to trimethoprim at 500 g/ml. An insert into pLAFR1 of about 9.4 kb was shown to be consistently present in the tirmethoprim-resistant clones. Southern blot analysis using radioactively labeled insert DNA as probe indicated that the 9.4 kb fragment hybridized only with a 40 kb indigenous plasmid from PgB3 designated pPg2.  相似文献   

15.
Pseudomonas syringae translocates virulence effector proteins into plant cells via a type III secretion system (T3SS) encoded by hrp (for hypersensitive response and pathogenicity) genes. Three genes coregulated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase domains: PSPTO1378 (here designated hrpH), PSPTO2678 (hopP1), and PSPTO852 (hopAJ1). hrpH is located between hrpR and avrE1 in the Hrp pathogenicity island and is carried in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11. Strong expression of DC3000 hrpH in Escherichia coli inhibits bacterial growth unless the predicted catalytic glutamate at position 148 is mutated. Translocation tests involving C-terminal fusions with a Cya (Bordetella pertussis adenylate cyclase) reporter indicate that HrpH and HopP1, but not HopAJ1, are T3SS substrates. Pseudomonas fluorescens carrying a pHIR11 derivative lacking hrpH is poorly able to translocate effector HopA1, and this deficiency can be restored by HopP1 and HopAJ1, but not by HrpH(E148A) or HrpH1-241. DC3000 mutants lacking hrpH or hrpH, hopP1, and hopAJ1 combined are variously reduced in effector translocation, elicitation of the hypersensitive response, and virulence. However, the mutants are not reduced in secretion of T3SS substrates in culture. When produced in wild-type DC3000, the HrpH(E148A) and HrpH1-241 variants have a dominant-negative effect on the ability of DC3000 to elicit the hypersensitive response in nonhost tobacco and to grow and cause disease in host tomato. The three Hrp-associated lytic transglycosylases in DC3000 appear to have overlapping functions in contributing to T3SS functions during infection.  相似文献   

16.
Chlorophyll fluorescence imaging has been used to analyse the response elicited in Phaseolus vulgaris after inoculation with Pseudomonas syringae pv. phaseolicola 1448A (compatible interaction) and P. syringae pv. tomato DC3000 (incompatible interaction). With the aim of modulating timing of symptom development, different cell densities were used to inoculate bean plants and the population dynamics of both bacterial strains was followed within the leaf tissue. Fluorescence quenching analysis was carried out and images of the different chlorophyll fluorescence parameters were obtained for infected as well as control plants at different timepoints post-infection. Among the different parameters analysed, we observed that non-photochemical quenching maximised the differences between the compatible and the incompatible interaction before the appearance of visual symptom. A decrease in non-photochemical quenching, evident in both infiltrated and non-infiltrated leaf areas, was observed in P. syringae pv. phaseolicola-infected plants as compared with corresponding values from controls and P. syringae pv. tomato-infected plants. No photoinhibitory damage was detected, as the maximum photosystem II quantum yield remained stable during the infection period analysed.  相似文献   

17.
A region of approximately 22 kb of DNA defines the large hrp gene cluster of strain GMI1000 of Pseudomonas solanacearum. The majority of mutants that map to this region have lost the ability to induce disease symptoms on tomato plants and are no longer able to elicit a hypersensitive reaction (HR) on tobacco, a nonhost plant. In this study we present the complementation analysis and nucleotide sequence of a 4772 by region of this hrp gene cluster. Three complete open reading frames (ORFs) are predicted within this region. The corresponding putative proteins, HrpN, HrpO and HpaP, have predicted sizes of 357, 690 and 197 amino acids, respectively, and predicted molecular weights of 38607, 73 990 and 21959 dalton, respectively. HrpN and HrpO are both predicted to be hydrophobic proteins with potential membrane-spanning domains and HpaP is rich in proline residues. A mutation in hpaP (for hrp associated) does not affect the HR on tobacco or the disease on tomato plants. None of the proteins is predicted to have an N-terminal signal sequence, which would have indicated that the proteins are exported. Considerable sequence similarities were found between HrpO and eight known or predicted prokaryotic proteins: LcrD of Yersinia pestis and Y. enterocolitica, FlbF of Caulobacter crescentus, F1hA of Bacillus subtilis, MxiA and VirH of Shigella flexneri, InvA of Salmonella typhimurium and HrpC2 of Xanthomonas campestris pv. vesicatoria. These homologies suggest that certain hrp genes of phytopathogenic bacteria code for components of a secretory system, which is related to the systems for secretion of flagellar proteins, Ipa proteins of Shigella flexneri and the Yersinia Yop proteins. Furthermore, these homologous proteins have the common feature of being implicated in a distinct secretory mechanism, which does not require the cleavage of a signal peptide. The sequence similarity between HrpO and HrpC2 is particularly high (66% identity and 81 % similarity) and the amino acid sequence comparison between these two proteins presented here reveals the first such sequence similarity to be shown between Hrp proteins of P. solanacearum and X. campestris. An efflux of plant electrolytes was found to be associated with the interactions between P. solanacearum and both tomato and tobacco leaves. This phenomenon may be part of the mechanism by which hrp gene products control and determine plant-bacterial interactions, since hrpO mutants induced levels of leakage which were significantly lower than those induced by the wild type on each plant.  相似文献   

18.
The paper deals with a comparative analysis of the serological and ecological properties of Pseudomonas syringae pv. atrofaciens strains from the collections of microbial cultures at the Malkov Institute for Plant Genetic Resources and Zabolotny Institute of Microbiology and Virology. All of the strains from the Bulgarian collection, except for one, fall into five serogroups (II through VI) of the classification system of Pastushenko and Simonovich. The P. syringae pv. atrofaciens strains isolated from Bulgarian and Ukrainian wheats belong mainly to serogroups II and IV, respectively. The strains that were isolated from rye plants belong to serogroup I. The strains isolated from sorghum and Sudan grass belong to serogroups II, IV, and VI. Serogroup III includes the P. syringae pv. atrofaciens strains that were isolated from cereals in the United Kingdom but not in Ukraine.  相似文献   

19.
DNA fragments containing argK-tox clusters and their flanking regions were cloned from the chromosomes of Pseudomonas syringae pathovar (pv.) actinidiae strain KW-11 (ACT) and P. syringae pv. phaseolicola strain MAFF 302282 (PHA), and then their sequences were determined. Comparative analysis of these sequences and the sequences of P. syringae pv. tomato DC3000 (TOM) (Buell et al., Proc Natl Acad Sci USA 100:10181–10186, 2003) and pv. syringae B728a (SYR) (Feil et al., Proc Natl Acad Sci USA 102:11064–11069, 2005) revealed that the chromosomal backbone regions of ACT and TOM shared a high similarity to each other but presented a low similarity to those of PHA and SYR. Nevertheless, almost-identical DNA regions of about 38 kb were confirmed to be present on the chromosomes of both ACT and PHA, which we named “tox islands.” The facts that the GC content of such tox islands was 6% lower than that of the chromosomal backbone regions of P. syringae, and that argK-tox clusters, which are considered to be of exogenous origin based on our previous studies (Sawada et al., J Mol Evol 54:437–457, 2002), were confirmed to be contained within the tox islands, suggested that the tox islands were an exogenous, mobile genetic element inserted into the chromosomes of P. syringae strains. It was also predicted that the tox islands integrated site-specifically into the homologous sites of the chromosomes of ACT and PHA in the same direction, respectively, wherein 34 common gene coding sequences (CDSs) existed. Furthermore, at the left end of the tox islands were three CDSs, which encoded polypeptides and had similarities to the members of the tyrosine recombinase family, suggesting that these putative site-specific recombinases were involved in the recent horizontal transfer of tox islands. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
Cell viability or cell death is an important variable to monitor in many studies of host/pathogen interactions. However for studies that focus on events within the first few hours of the interaction, many of the viability assays currently being used are either too laborious and time consuming or measure the cell's temporary metabolic state rather than irreversible cell death. Evans blue has proven over the years to be a dependable stain for microscopic determination of cell death. We have used this stain to develop a spectrophotometric procedure that allows rapid, reproducible quantification of the stain retained by dead cells. This spectrophotometric procedure was used to compare plant/bacteria interactions involving either soybean/Pseudomonas syringae pv. glycinea or tobacco/P. syringae pv. syringae. Relative increases in cell death during these interactions in suspension cell systems were measured by both the spectrophotometric and microscopic technique and found to be similar. The spectrophotometric procedure was also adapted for leaf disc assays.Abbreviations HR hypersensitive response - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号