首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional control of leaf‐cutting ants is mainly carried out by application of solid insecticide baits. However, alternative approaches could increase the efficiency of control methods. Here, we investigated the hypothesis that liquid and semi‐solid baits are more readily ingested by leaf‐cutting ants and are therefore more toxic than solid baits. Furthermore, following increased ingestion rates, ants could perform higher frequencies of trophallactic exchanges with their nest mates, thus increasing dispersal rates within the colony. Each of three diets were offered to Acromyrmex subterraneus subterraneus (Forel) and Atta sexdens rubropilosa Forel (both Hymenoptera: Formicidae) for 1 h under laboratory conditions and subsequently crop volumes were quantified. The highest crop volumes for both species were seen when the diet was offered in liquid form, and the lowest crop volumes were observed after offering solid diets. Survival rates of the ants were monitored following addition of the neonicotinoid insecticide imidacloprid (IMI) to the three diets. The ingestion of liquid and semi‐solid diets + IMI by A. subterraneus resulted in 17 and 6% survival, respectively, whereas these diets caused 100% mortality of A. sexdens. Ingestion of solid diets with IMI resulted in 51% survival of A. subterraneus and 23% survival of Atta workers. Twenty‐three percent of A. subterraneus which had fed on liquid diet carried out trophallactic exchanges, whereas only 10 and 3% of ants carried out trophallaxis when fed on semi‐solid or solid diet, respectively. Lower trophallactic frequencies were observed for A. sexdens, with 13 and 3% of ants that had fed on liquid and semi‐solid diets performing trophallaxis, respectively. The low trophallactic exchange rates following ingestion of solid diets would reduce the dispersal of these compounds throughout the colony. Control strategies using solid baits should be re‐examined in the light of these findings, which indicate the importance of optimizing insecticide ingestion.  相似文献   

2.
Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open‐top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf‐chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two experimental sites at different elevations and carried out a brief inventory of insect herbivores. Experimental warming increased herbivory on Dryas octopetala and Bistorta vivipara. Dryas octopetala also experienced increased herbivory at the lower and warmer site, indicating an overall positive effect of warming, whereas B. vivipara experienced an increased herbivory at the colder and higher site indicating a mixed effect of warming. The Lepidoptera Zygaena exulans and Sympistis nigrita were the two most common leaf‐chewing insects in the Dryas heath. Based on the observed patterns of herbivory, the insects life cycles and feeding preferences, we argue that Z. exulans is the most important herbivore on B. vivipara, and S. nigrita the most important herbivore on D. octopetala. We conclude that if the degree of insect herbivory increases in a warmer world, as suggested by this study and others, complex interactions between plants, insects, and site‐specific conditions make it hard to predict overall effects on plant communities.  相似文献   

3.
Soil amendment with Silicon (Si) can increase plant resistance against insect herbivores, but the underlying mechanisms remain unclear. The mechanical resistance hypothesis (MRH) states that Si accumulated in epidermal cells directly and passively protects against herbivores by creating a mechanical barrier. The physiological resistance hypothesis (PRH) states that Si enhances resistance by activating plant biochemical and physiological processes. We tested both hypotheses by manipulating Si fertilization of the Si non‐accumulator collard, Brassica oleracea L. cv. acephala (Brassicaceae). Then, we assessed functional and ultrastructural plant responses and the developmental and reproductive performance of the leaf‐chewing larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), and the sap‐sucking cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). There was a 20% increase in leaf Si content. Silicon deposition in epidermal cells was identified by confocal microscopy and directly coincided with lower performance of P. xylostella, but did not affect B. brassicae. On the other hand, we found no unequivocal evidence that Si‐mediated changes in primary and secondary metabolism improved plant resistance against the insects. Negative mechanical effects of Si on the insects may have masked beneficial effects of increased water, nitrogen, and mineral contents in Si‐treated collards. Silicon did not change leaf contents of hemicellulose, cellulose, and lignin. Although Si‐mediated increases in leaf glucosinolates (GLS) correlated with lower larval performance and higher oviposition preference of P. xylostella, both P. xylostella and B. brassicae are highly specialized in overcoming such secondary metabolites. Thus, mechanical resistance may have impaired P. xylostella, rather than the Si‐mediated increase in GLS. We suggest that the PRH may depend on the degree of insect feeding specialization, so that toxic Si‐mediated defenses may be more efficient against unadapted polyphagous herbivores. For them, a toxic barrier may be added to the mechanical resistance.  相似文献   

4.
Leaf‐cutting ants are a serious pest of young forestry plantations. Currently, the main control method is the use of broad‐spectrum insecticides, which have a negative effect on non‐target organisms and the environment. In this work, plant‐based compounds were evaluated in laboratory assays with Acromyrmex ambiguus Emery (Hymenoptera: Formicidae) for their potential use as repellent and attractant stimuli to be used in a push‐pull strategy. Farnesol, a sesquiterpene present in many essential oils, was tested as a repellent at doses of 10, 50, and 100 mg. Its distance of action was studied by comparing the repellent effect of farnesol in a situation in which ants had to touch the farnesol in order to reach the food source in comparison to when ants could reach the food source without getting into direct contact with it. Different parts of the orange fruit (pulp and peel) were evaluated and compared as attractants, given that citrus‐based baits are among the most popular attractants used. Results from laboratory bioassays indicated that farnesol is repellent at doses of 50 mg and acts upon contact or at a very short distance. Furthermore, orange pulp was more attractive than the peel, and volatile compounds were highly responsible for the attraction. When both stimuli were tested simultaneously in a laboratory experiment, repellency of farnesol was enhanced in the presence of orange pulp odor. When tested in a field push‐pull experiment, the results also showed a good repellent effect of farnesol as well as an attractant effect of the orange pulp. These results encourage long‐term studies with these substances in a field setting and suggest that repellents can be enhanced by the use of attractants to manage leaf‐cutting ants behavior.  相似文献   

5.
Leaf‐cutting ants (LCA) are polyphagous and dominant herbivores throughout the Neotropics that carefully select plant individuals or plant parts to feed their symbiotic fungus. Although many species‐specific leaf traits have been identified as criteria for the choice of food plants, the factors driving intraspecific herbivory patterns in LCA are less well studied. Herein, we evaluate whether or not drought‐stressed native plants are a preferred food source using free‐living colonies of two leaf‐cutting ants, Atta sexdens L. (Hymenoptera: Formicidae: Attini), in combination with five plant species, Ocotea glomerata Nees (Lauraceae), Lecythis lurida S. A. Mori (Lecythidaceae), Miconia prasina DC (Melastomataceae), Tovomita brevistaminea Engl. (Clusiaceae), and Tapirira guianensis Aubl. (Anacardiaceae), and Atta cephalotes L., in combination with two plant species, O. glomerata and Licania tomentosa Benth. (Chrysobalanaceae). In dual‐choice bioassays, ants removed about three times more leaf area from drought‐stressed plants compared to control plants. Both leaf‐cutting ant species consistently preferred drought‐stressed plants for all species tested, except T. guianensis. The mean acceptability index – expressing the preference for one of two options on a scale of 0 to 1 – of drought‐stressed plants ranged from 0.65 to 0.86 across plant species, and the preference did not differ significantly among the tested plant species. Our results suggest that selection of drought‐stressed individuals is a general feature of food plant choice by leaf‐cutting ants irrespective of ant or plant species. As human‐modified forest assemblages across the Neotropics are increasingly prone to drought stress, the documented preference of Atta for drought‐stressed plants may have tangible ecological implications.  相似文献   

6.
Several factors may restrict the acquisition of food to below the levels predicted by the optimization theory. However, how the design of structures that animals build for foraging restricts the entry of food is less known. Using scaling relationships, we determined whether the design of the entrances of leaf‐cutting ant nests restricts resource input into the colony. We measured nests and foraging parameters in 25 nests of Atta cephalotes in a tropical rain forest. Ant flux was reduced to up to 60% at nest entrances. The width of all entrances per nest increased at similar rates as nest size, but the width of nest entrances increased with the width of its associated trail at rates below those expected by isometry. The fact that entrance widths grow slower than trail widths suggests that the enlargement of entrance holes does not reach the dimensions needed to avoid delays when foraging rates are high and loads are big. The enlargement of nest entrances appears to be restricted by the digging effort required to enlarge nest tunnels and by increments in the risk of inundation, predator/parasitoid attacks and microclimate imbalances inside the nest. The design of the extended phenotypes can also restrict the ingress of food into the organisms, offering additional evidence to better understand eventual controversies between empirical data and the foraging theory. Abstract in Spanish is available with online material.  相似文献   

7.
Internally feeding herbivorous insects such as leaf miners have developed the ability to manipulate the physiology of their host plants in a way to best meet their metabolic needs and compensate for variation in food nutritional composition. For instance, some leaf miners can induce green‐islands on yellow leaves in autumn, which are characterized by photosynthetically active green patches in otherwise senescing leaves. It has been shown that endosymbionts, and most likely bacteria of the genus Wolbachia, play an important role in green‐island induction in the apple leaf‐mining moth Phyllonorycter blancardella. However, it is currently not known how widespread is this moth‐Wolbachia‐plant interaction. Here, we studied the co‐occurrence between Wolbachia and the green‐island phenotype in 133 moth specimens belonging to 74 species of Lepidoptera including 60 Gracillariidae leaf miners. Using a combination of molecular phylogenies and ecological data (occurrence of green‐islands), we show that the acquisitions of the green‐island phenotype and Wolbachia infections have been associated through the evolutionary diversification of Gracillariidae. We also found intraspecific variability in both green‐island formation and Wolbachia infection, with some species being able to form green‐islands without being infected by Wolbachia. In addition, Wolbachia variants belonging to both A and B supergroups were found to be associated with green‐island phenotype suggesting several independent origins of green‐island induction. This study opens new prospects and raises new questions about the ecology and evolution of the tripartite association between Wolbachia, leaf miners, and their host plants.  相似文献   

8.
Determining the nutrient factors influencing food choice provides important insight into the feeding strategy of animals, which is crucial for understanding their behavioral response to environmental changes. A bamboo‐leaf‐based diet is rare among mammals. Animals’ food choice and nutritional goals have been explained by several frameworks; however, the influence of nutrients on food choice in bamboo‐leaf‐based macaques is not yet available. Assamese macaques (Macaca assamensis) inhabiting limestone forests are characterized by such a bamboo‐leaf‐based diet, predominantly consuming young leaves of Bonia saxatilis, a shrubby, karst‐endemic bamboo. We studied the feeding behavior of one group of Assamese macaques using instantaneous scan sampling in limestone forests of the Guangxi Nonggang National Nature Reserve in southwest Guangxi, China. We compared the nutrient content of staple food and nonfood items and examine the role of key nutrients in the food selection of macaques. Our results showed that young leaves of bamboo B. saxatilis contained more water, crude protein, phosphorus, and less tannin than nonfood items. Furthermore, staple foods contained a higher content of water and less content of calcium than nonfood items. More specifically, quantities of water, crude protein, calcium, and phosphorus in food items were critical factors affecting feeding time on a specific plant item. Our results suggest that young bamboo leaves could meet macaques’ required protein and water intake, while enabling them to maintain their mineral balance, consequently facilitating to maintain the primates’ bamboo‐leaf‐diet in the limestone forest. Our findings confirm the effects of nutrient contents in food choice of Assamese macaques, highlighting the importance of the nutrient contents in maintaining their bamboo‐based diet and the need to increase the knowledge on their nutritional strategy adapted to the bamboo‐dominated diet inhabiting the unique limestone habitat.  相似文献   

9.
The preference‐performance or ‘mother‐knows‐best’ hypothesis states that female insects choose to oviposit on a host plant that increases the performance of their offspring. This positive link between host plant choice and larval performance is especially important for leaf miners with non‐motile larvae that are entirely dependent upon the oviposition choice of the female for host plant location. Preference and performance of the ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae), a specialist on ash trees, Fraxinus spp. (Oleaceae), were tested in a series of laboratory and field experiments. Female C. fraxinella were exposed to two closely related hosts, black ash, Fraxinus nigra Marshall, and green ash, Fraxinus pennsylvanica Marshall var. subintegerrima (Vahl), in oviposition choice and wind tunnel flight experiments to determine which host is most attractive for oviposition. Caloptilia fraxinella females were inconsistent in host choice, yet performance of larvae was greater on green than black ash. In preference studies, C. fraxinella preferred to oviposit on black ash when leaflets were removed from the tree, but preferred intact green ash over black ash seedlings for oviposition and host location in a wind tunnel. In the field, however, more C. fraxinella visited black ash var. ‘Fallgold’ at leaf flush than green ash at the same sites. Age of the ash leaflet also influences oviposition in this leaf miner and females preferred new over old leaflets for oviposition. Performance of C. fraxinella larvae was evaluated in field and laboratory experiments and was greater on green ash than on black ash in both experiments based on larval survival and development time parameters. The stronger oviposition and host location preference in the field for black ash were not linked to enhanced performance of offspring, as green ash was the superior host, supporting higher larval survival and faster development. A stronger host location preference in the wind tunnel for green ash over black ash, however, suggests that under certain circumstances with this moth species, ‘mother (may) know best’.  相似文献   

10.
Anthropogenic disturbances are known to modify plant–animal interactions such as those involving the leaf‐cutting ants, the most voracious and proliferating herbivore across human‐modified landscapes in the Neotropics. Here, we evaluate the effect of chronic anthropogenic disturbance (e.g., firewood collection, livestock grazing) and vegetation seasonality on foraging area, foliage availability in the foraging area, leaf consumption and herbivory rate of the leaf‐cutting ant Atta opaciceps in the semiarid Caatinga, a mosaic of dry forest and scrub vegetation in northeast Brazil. Contrary to our initial expectation, the foraging area was not affected by either disturbance intensity or the interaction between season and disturbance intensity. However, leaf consumption and herbivory rate were higher in more disturbed areas. We also found a strong effect of seasonality, with higher leaf consumption and herbivory rate in the dry season. Our results suggest that the foraging ecology of leaf‐cutting ants is modulated by human disturbance and seasonality as these two drivers affect the spectrum and the amount of resources available for these ants in the Caatinga. Despite the low productivity of Caatinga vegetation, the annual rates of biomass consumption by A. opaciceps are similar to those reported from other leaf‐cutting ants in rain forests and savannas. This is made possible by maintaining high foraging activity even in the peak of the dry season and taking benefit from any resource available, including low‐quality items. Such compensation highlights the adaptive capacity of LCA to persist or even proliferate in human‐modified landscapes from dry to rain forests.  相似文献   

11.
Amphibian species are known to carry endoparasitic mites. The infestation probability, prevalence, and intensity of mites vary among species and habitats. Mites of the genus Endotrombicula are known to infest African and Malagasy frogs. However, the factors leading to an increase in the probability of mite infestation are unknown. To test for inter‐ and intraspecific differences in infestation probability and its potential correlation with sex, age, habitat preferences, and/or season within a species‐rich West African leaf‐litter frog assemblage, we examined more than 6,800 individual frogs for the presence of mites throughout two independent time increments, 1999–2000 and 2016–2017. We found only members of the leaf‐litter frog genus Phyrnobatrachus to be infested, while other syntopically occurring genera were not affected. Within Phrynobatrachus, only four out of eight species were infested. Mites prevalence differed between species (highest P. phyllophilus, followed by P. alleni), sex (males higher than females in P. alleni and P. phyllophilus), and age (adults higher than juveniles in P. alleni), as well as season (more mites during wet than dry season in P. phyllophilus). The prevalence of mite infestation did not influence mate choice in P. alleni. Increased humidity showed a clear positive effect on infestation prevalence. We also detected a marked decrease in the prevalence of mites from 1999–2000 to 2016–2017, a period during which climatological changes within the study area have been reported with a tendency toward drier conditions. The decrease in mite infestation prevalence over time might be a signal of increasingly drier conditions.  相似文献   

12.
13.
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf‐nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long‐wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss‐of‐function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave‐roosting species. These mutations in leaf‐nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade‐off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.  相似文献   

14.
15.
16.
17.
18.
19.
Major shifts in the availability of palatable plant resources are of key relevance to the ecology of leaf‐cutting ants in human‐modified landscapes. However, our knowledge is still limited regarding the ability of these ants to adjust their foraging strategy to dynamic environments. Here, we examine a set of forest stand attributes acting as modulating forces for the spatiotemporal architecture of foraging trail networks developed by Atta cephalotes L. (Hymenoptera: Formicidae: Attini). During a 12‐month period, we mapped the foraging systems of 12 colonies located in Atlantic forest patches with differing size, regeneration age, and abundance of pioneer plants, and examined the variation in five trail system attributes (number of trails, branching points, leaf sources, linear foraging distance, and trail complexity) in response to these patch‐related variables. Both the month‐to‐month differences (depicted in annual trail maps) and the steadily accumulating number of trails, trail‐branching points, leaf sources, and linear foraging distance illustrated the dynamic nature of spatial foraging and trail complexity. Most measures of trail architecture correlated positively with the number of pioneer trees across the secondary forest patches, but no effects from patch age and size were observed (except for number of leaf sources). Trail system complexity (measured as fractal dimension; Df index) varied from 1.114 to 1.277 along the 12 months through which ant foraging was monitored, with a marginal trend to increase with the abundance of pioneer stems. Our results suggest that some leaf‐cutting ant species are able to generate highly flexible trail networks (via fine‐tuned adjustment of foraging patterns), allowing them to profit from the continuous emergence/recruitment of palatable resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号