首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult neurogenesis is a highly regulated, multi-stage process in which new neurons are generated from an activated neural stem cell via increasingly committed intermediate progenitor subtypes. Each of these subtypes expresses a set of specific molecular markers that, together with specific morphological criteria, can be used for their identification. Typically, immunofluorescent techniques are applied involving subtype-specific antibodies in combination with exo- or endogenous proliferation markers. We herein describe immunolabeling methods for the detection and quantification of all stages of adult hippocampal neurogenesis. These comprise the application of thymidine analogs, transcardial perfusion, tissue processing, heat-induced epitope retrieval, ABC immunohistochemistry, multiple indirect immunofluorescence, confocal microscopy and cell quantification. Furthermore we present a sequential multiple immunofluorescence protocol which circumvents problems usually arising from the need of using primary antibodies raised in the same host species. It allows an accurate identification of all hippocampal progenitor subtypes together with a proliferation marker within a single section. These techniques are a powerful tool to study the regulation of different progenitor subtypes in parallel, their involvement in brain pathologies and their role in specific brain functions.  相似文献   

2.
Rash  J. E.  Pereda  A.  Kamasawa  N.  Furman  C. S.  Yasumura  T.  Davidson  K. G. V.  Dudek  F. E.  Olson  C.  Li  X.  Nagy  J. I. 《Brain Cell Biology》2004,33(1):131-151
Combined confocal microscopy and freeze-fracture replica immunogold labeling (FRIL) were used to examine the connexin identity at electrical synapses in goldfish brain and rat retina, and to test for “co-localization” vs. “close proximity” of connexins to other functionally interacting proteins in synapses of goldfish and mouse brain and rat retina. In goldfish brain, confocal microscopy revealed immunofluorescence for connexin35 (Cx35) and NMDA-R1 (NR1) glutamate receptor protein in Mauthner Cell/Club Ending synapses. By FRIL double labeling, NR1 glutamate receptors were found in clusters of intramembrane particles in the postsynaptic membrane extraplasmic leaflets, and these distinctive postsynaptic densities were in close proximity (0.1–0.3 μm) to neuronal gap junctions labeled for Cx35, which is the fish ortholog of connexin36 (Cx36) found at neuronal gap junctions in mammals. Immunogold labeling for Cx36 in adult rat retina revealed abundant gap junctions, including several previously unrecognized morphological types. As in goldfish hindbrain, immunogold double labeling revealed NR1-containing postsynaptic densities localized near Cx36-labeled gap junction in rat inferior olive. Confocal immunofluorescence microscopy revealed widespread co-localization of Cx36 and ZO-1, particularly in the reticular thalamic nucleus and amygdala of mouse brain. By FRIL, ZO-1 immunoreactivity was co-localized with Cx36 at individual gap junction plaques in rat retinal neurons. As cytoplasmic accessory proteins, ZO-1 and possibly related members of the membrane-associated guanylate kinase (MAGUK) family represent scaffolding proteins that may bind to and regulate the activity of many neuronal gap junctions. These data document the power of combining immunofluorescence confocal microscopy with FRIL ultrastructural imaging and immunogold labeling to determine the relative proximities of proteins that are involved in short- vs. intermediate-range molecular interactions in the complex membrane appositions at synapses between neurons.  相似文献   

3.
This report compares the application of confocal laser scanning fluorescence microscopy with standard epifluorescence microscopy for the simultaneous localization of the neurotransmitters gamma-aminobutyric acid and glutamate in rat cerebral cortex. With this approach, sections of fixed rat brain are treated with primary antibodies against gamma-aminobutyric acid (rabbit-derived) and glutamate (mouse-derived), followed by treatment with fluorescein isothiocyanate-tagged donkey anti-rabbit and rhodamine-tagged goat anti-mouse secondary antibodies, respectively. The results demonstrate that images from immunofluorescence localizations with a confocal laser scanning microscope have superior resolution and contrast as a result of significant reductions of background flare caused by emission from out-of-focus structures in the field of view. The confocal microscope achieves this improved image quality by optically sectioning through a specimen at narrow planes of focus and then compiling a composite image of an object of interest. The composite image can be further enhanced by using various image processing options. The combined use of double immunofluorescence and confocal laser scanning microscopy provides an important means to simultaneously study the anatomical relationships of pre- and post-synaptic elements in a complex neural system.  相似文献   

4.
 Immunocytochemical double-labeling methods are important tools in cell and neurobiology. Here we describe a method which is based on double immunofluorescence and allows specific detection of two different antigens located in the same cell compartment by two primary antibodies raised in the same species. As an example, we present the double-immunolabeling method for the S-antigen (SAg), a photoreceptor-specific protein, and the indoleamine serotonin (5HT) in dissociated trout and rat pineal cells immobilized on coversliped and in frozen sections of the trout pineal organ. As a first step, the preparations on the slides or coverslips were sequentially incubated with the first primary antibody (rabbit anti-SAg), the fluorescein-labeled (anti-rabbit) secondary antibody, and then with normal rabbit serum. Meanwhile, the second primary antibody (rabbit anti-5HT) was coupled to a Cy3-labeled secondary (anti-rabbit) antibody in a reaction tube and excess binding sites were quenched with normal rabbit serum. This complex was applied to the specimens after completion of the first (SAg) immunoreaction on the slide. For control experiments, the first (anti-SAg) or the second (anti-5HT) primary antibody were omitted. Most of the rat and trout pinealocytes were double immunolabeled for SAg and 5HT. In the trout, few cells contained SAg or 5HT immunoreaction only. This underlines the selectivity of each immunoreaction. The results show that the method can be used for the analysis of whole cells and tissue sections by means of conventional fluorescence and confocal laser scanning microscopy. Accepted: 20 October 1997  相似文献   

5.
Antigen detection with indirect immunohistochemical methods is hampered by high background staining if the primary antibody is from the same species as the examined tissue. This high background can be eliminated in unfixed cryostat sections of mouse skeletal muscle by boiling sections in PBS, and several proteins including even the low abundant dystrophin protein can then be easily detected with murine monoclonal antibodies. However, not all antigens withstand the boiling procedure. Immunoreactivity of some of these antigens can be restored by subsequent washing in Triton X-100, whereas immunoreactivity of other proteins is not restored by this detergent treatment. When such thermolabile proteins are labeled with polyclonal primary antibodies followed by dichlorotriazinylaminofluorescein–conjugated secondary antibodies and boiled, the fluorescence signal persists, and sections can then be processed with a monoclonal antibody for double immunostaining of a protein unaffected by boiling. This stability of certain fluorochromes on heating can also be exploited for double immunofluorescence labeling of two different thermostable proteins with murine monoclonal antibodies as well as for combination with Y-chromosome fluorescence in situ hybridization. Our method should extend the range of monoclonal antibodies applicable to tissues derived from the same species as the monoclonal antibodies. (J Histochem Cytochem 56:969–975, 2008)  相似文献   

6.
Bromodeoxyuridine (BrdU) immunohistochemistry is the method of choice for labeling newly generated cells in the brain. Most BrdU studies utilize paraformaldehyde-fixed brain tissue because of its compatibility with both BrdU and other immunohistochemical methods. However, stronger fixation is required for electron microscopic studies, and unfixed tissue is needed for biochemical and molecular studies. Because there are no systematic studies comparing the effects of different fixatives on BrdU immunohistochemistry in brain tissue, we compared BrdU immunohistochemical methods in brain tissue fixed with 4% paraformaldehyde, a mixed glutaraldehyde-paraformaldehyde fixative for electron microscopy, and unfixed tissue from brains perfused only with buffer and flash frozen. After optimizing immunostaining protocols, qualitative assessments of light microscopic diaminobenzidine labeling and of double-label immunofluorescence with confocal microscopy demonstrated excellent BrdU labeling in each of the three groups. Quantitative stereological assessment of the number of BrdU-labeled cells in rat dentate gyrus showed no significant difference in the number of labeled cells detected with each perfusion protocol. Additionally, we developed a protocol to visualize BrdU-labeled cells in the electron microscope with adequate preservation of fine structure in both rat and monkey brain.  相似文献   

7.
8.
The specificities of carbonic anhydrase isoenzyme C (CA C) and glial fibrillary acidic (GFA) protein as immunocytochemical markers for different glial cell populations in human brain and retina were studied using indirect immunofluorescence and peroxidase-antiperoxidase complex methods. With antibodies against CA C, only those cerebral cells that were morphologically oligodendrocytes and Müller cells of the retina showed positive immunostaining reaction, whereas antibodies against GFA protein selectively labeled cerebral astrocytes and a part of the glial cells and fibers in the inner layers of the retina. In double labeling, when both glial cell markers were successively localized in the same cerebral tissue sections, GFA protein immunofluorescence was never found in the immunoperoxidase-stained CA C-positive cells, which further supports the oligodendrocyte-specificity of CA C in human brain.  相似文献   

9.
Hsp10 (10-kDa heat shock protein, also known as chaperonin 10 or Cpn10) is a co-chaperone for Hsp60 in the protein folding process. This protein has also been shown to be identical to the early pregnancy factor, which is an immunosuppressive growth factor found in maternal serum. In this study we have used immunogold electron microscopy to study the subcellular localization of Hsp10 in rat tissues sections embedded in LR Gold resin employing polyclonal antibodies raised against different regions of human Hsp10. In all rat tissues examined including liver, heart, pancreas, kidney, anterior pituitary, salivary gland, thyroid, and adrenal gland, antibodies to Hsp10 showed strong labeling of mitochondria. However, in a number of tissues, in addition to the mitochondrial labeling, strong and highly specific labeling with the Hsp10 antibodies was also observed in several extramitochondrial compartments. These sites included zymogen granules in pancreatic acinar cells, growth hormone granules in anterior pituitary, and secretory granules in PP pancreatic islet cells. Additionally, the mature red blood cells which lack mitochondria, also showed strong reactivity with the Hsp10 antibodies. The observed labeling with the Hsp10 antibodies, both within mitochondria as well as in other compartments/cells, was abolished upon omission of the primary antibodies or upon preadsorption of the primary antibodies with the purified recombinant human Hsp10. These results provide evidence that similar to a number of other recently described mitochondrial proteins (viz., Hsp60, tumor necrosis factor receptor-associated protein-1, P32 (gC1q-R) protein, and cytochrome c), Hsp10 is also found at a variety of specific extramitochondrial sites in normal rat tissue. These results raise important questions as to how these mitochondrial proteins are translocated to other compartments and their possible function(s) at these sites. The presence of these proteins at extramitochondrial sites in normal tissues has important implications concerning the role of mitochondria in apoptosis and genetic diseases.  相似文献   

10.
Catalase and ABCD3 are frequently used as markers for the localization of peroxisomes in morphological experiments. Their abundance, however, is highly dependent on metabolic demands, reducing the validity of analyses of peroxisomal abundance and distribution based solely on these proteins. We therefore attempted to find a protein which can be used as an optimal marker for peroxisomes in a variety of species, tissues, cell types and also experimental designs, independently of peroxisomal metabolism. We found that the biogenesis protein peroxin 14 (PEX14) is present in comparable amounts in the membranes of every peroxisome and is optimally suited for immunoblotting, immunohistochemistry, immunofluorescence, and immunoelectron microscopy. Using antibodies against PEX14, we could visualize peroxisomes with almost undetectable catalase content in various mammalian tissue sections (submandibular and adrenal gland, kidney, testis, ovary, brain, and pancreas from mouse, cat, baboon, and human) and cell cultures (primary cells and cell lines). Peroxisome labeling with catalase often showed a similar tissue distribution to the mitochondrial enzyme mitochondrial superoxide dismutase (both responsible for the degradation of reactive oxygen species), whereas ABCD3 exhibited a distinct labeling only in cells involved in lipid metabolism. We increased the sensitivity of our methods by using QuantumDots?, which have higher emission yields compared to classic fluorochromes and are unsusceptible to photobleaching, thereby allowing more exact quantification without artificial mistakes due to heterogeneity of individual peroxisomes. We conclude that PEX14 is indeed the best marker for labeling of peroxisomes in a variety of tissues and cell types in a consistent fashion for comparative morphometry.  相似文献   

11.
At the time of primary therapy (surgery, systemic chemotherapy and/or radiation), disseminated tumor cells in the bone marrow can be found in almost one-third of patients with cancer of the breast, ovary, esophagus, stomach, colon, and other solid tumors. Whereas the prognostic impact of the mere presence of these cells is still a matter of debate, it has been shown that expression of tumor-associated antigens in disseminated tumor cells is linked to more aggressive disease. Therefore, further characterization of disseminated tumor cells at the protein and gene level has become increasingly important. To date, the most common detection method for disseminated tumor cells in the bone marrow is an immunocytochemical approach using cytokeratin-directed antibodies for detection of epithelial cells and the APAAP system for their visualization. We have established a new double immunofluorescence technique enabling simultaneous detection, phenotyping, and antigen quantification of disseminated tumor cells. Mononuclear cells from bone marrow are enriched by Ficoll gradient centrifugation and cytospins are prepared. Double immunofluorescence is performed using antibodies against cytokeratins 8/18/19 (mAb A45B/B3) and the uPA receptor CD87 (pAb HU277). CD87 expression is recorded by confocal laser scanning microscopy (CLSM) using fluorescence labeled latex beads as the reference; staining intensities of all the scans are then summed and quantified (extended focus). This protocol, originally designed for disseminated tumor cells in bone marrow, can also be applied to disseminated tumor cells in blood, to leukapheresis cells or to cells present in malignant ascites or other malignant effusions. The tumor cells detected may be used for gene and mRNA analyses. Furthermore, disseminated tumor cells also represent interesting targets for clinical studies on patient prognosis or prediction of therapy response as well as for specific tumor-biological therapies.  相似文献   

12.
Delineation of brain tumor margins during surgery is critical to maximize tumor removal while preserving normal brain tissue to obtain optimal clinical outcomes. Although various imaging methods have been developed, they have limitations to be used in clinical practice. We developed a high‐speed cellular imaging method by using clinically compatible moxifloxacin and confocal microscopy for sensitive brain tumor detection and delineation. Moxifloxacin is a Food and Drug Administration (FDA) approved antibiotic and was used as a cell labeling agent through topical administration. Its strong fluorescence at short visible excitation wavelengths allowed video‐rate cellular imaging. Moxifloxacin‐based confocal microscopy (MBCM) was characterized in normal mouse brain specimens and visualized their cytoarchitecture clearly. Then, MBCM was applied to both brain tumor murine models and two malignant human brain tumors of glioblastoma and metastatic cancer. MBCM detected tumors in all the specimens by visualizing dense and irregular cell distributions, and tumor margins were easily delineated based on the cytoarchitecture. An image analysis method was developed for automated detection and delineation. MBCM demonstrated sensitive delineation of brain tumors through cytoarchitecture visualization and would have potentials for human applications, such as a surgery‐guiding method for tumor removal.   相似文献   

13.
Summary While formaldehyde fixation preserves tissue morphology, it often hinders immunodetection of antigens in paraffin-embedded tissue because the antigens are masked. Antigen unmasking can be achieved with treatments such as microwave irradiation but they often lead to excessive tissue damage. Therefore, an electrochemical antigen-retrieval method (EAR) was devised in which an alternating electric current is passed through the tissue in a chamber containing an electrolyte buffer. The results obtained with this method were compared to those after microwave irradiation using archived samples of formaldehyde-fixed and paraffin-embedded lepromatous leprosy skin. The efficacy of the two unmasking procedures was assessed by the immunodetectability of several marker antigens using 24 antibodies. Fifteen antibodies that were directed against transmembrane proteins (CD), and the remaining 9 against cytokeratins 18.6 and 19, laminin, vimentin, S100a, BCG,Ulex europaeus lectin, PCNA, and P21^ras. Simple and double immunohistochemistry was performed using the universal ENVISION and LSAB + AP detection systems. After unmasking with the EAR method, immunoreactivity was clearly detected with 22 of the 24 antibodies in single labeling reactions. They include the critical antigens CD3 and CD4 for identifying the T lymphocyte lineages. In contrast, only 20 of the antibodies reacted after microwave irradiation. After double immunolabeling, immunoreactivity was quantitatively similar with both methods. However, the EAR unmasking produced a stronger labeling reaction. Thus, with double labeling immunohistochemistry, EAR made it possible to use higher antibody dilutions and shorter incubation times. Heat damage was also prevented. In conclusion, EAR treatment produces better staining results than microwave irradiation treatment.  相似文献   

14.
Immunohistochemistry on mouse tissue utilizing mouse monoclonal antibodies presents a challenge. Secondary antibodies directed against the mouse monoclonal primary antibody of interest will also detect endogenous mouse immunoglobulin in the tissue. This can lead to significant spurious staining. Therefore, a “mouse-on-mouse” staining strategy is needed to yield credible data. This paper presents a method that is easy to use and highly flexible to accommodate both an avidin-biotin detection system as well as a biotin-free polymer detection system. The mouse primary antibody is first combined with an Fab fragment of an anti-mouse antibody in a tube and allowed sufficient time to form an antibody complex. Any non-complexed secondary antibody is bound up with mouse serum. The mixture is then applied to the tissue. The flexibility of this method is confirmed with the use of different anti-mouse antibodies followed by a variety of detection reagents. These techniques can be used for immunohistochemistry (IHC), immunofluorescence (IF), as well as staining with multiple primary antibodies. This method has also been adapted to other models, such as using human antibodies on human tissue and using multiple rabbit antibodies in dual immunofluorescence.  相似文献   

15.
Many of the antigens commonly investigated in histopathology can be enhanced by microwave pretreatment (MWPT) of formalin fixed, paraffin embedded tissue sections. We developed a double labeling method using microwave heating to detect otherwise undetectable nuclear antigens combined.with immunohisto-chemistry (IHC) of cytoplasmic or membranous antigens that do not benefit from MWPT. We used the same primary antibody solutions used in single antibody IHC. The staining technique is based on the alkaline phosphatase anti-alkaline phosphatase (APAAP) and the labeled avidin-biotin (LSAB) methods. Four different protocols were tested, each modifying the sequence of MWPT, APAAP and LSAB staining. In this study Ki67, estrogen receptor, progesterone receptor, c-neu, CD68 and desmin primary antibodies were used in routinely formalin fixed, paraffin embedded tissues of 50 tumor specimens. MWPT followed by LSAB for microwave enhanced antigens and APAAP for antigens that cannot be enhanced by MWPT gave the best double staining results. This method improves characterization of tumor cell features from paraffin embedded tissue and should aid analysis of tumor differentiation, receptor status and nuclear proteins in the single cells in archival tissues.  相似文献   

16.
Klämbt C  Schmidt O 《The EMBO journal》1986,5(11):2955-2961
Recessive mutations in the Drosophila tumor gene lethal (2) giant larvae affect the growth and tissue specificity of determined cells in imaginal discs and presumptive optic centers of the brain. To analyse the function of the l (2) gl gene during development, we have raised monoclonal antibodies against the l (2) gl protein. These antibodies detect a 130-kd protein in wild-type tissue which is absent in homozygous mutant tissues. The protein is detected in increasing amounts up to mid-embryonic stages. Antibody binding to embryo sections and indirect immunofluorescence labeling indicate that the protein is localized at the cellular membranes or in the intercellular matrix of the embryonic cells. The primordia of all larval tissues are labeled in the embryo. Much less labeling is found in the neural primordia of the central nervous system, except that within the supraoesophageal ganglion the regions of the presumptive optic centers are distinctly labeled. Moreover, the axon bundles of the ventral cord are labeled in the embryo, apparently a reflection of the accumulation of cell membranes here. After embryogenesis the l (2) gl protein is found at a low level until the end of the 3rd larval instar, when it is preferentially seen in the brain and imaginal discs. The protein distribution in embryonic and larval tissues correlates with already known proliferation patterns, which could indicate that the l (2) gl protein is involved in proliferation arrest of cells.  相似文献   

17.
The patterns of expression of dystrophin were investigated by indirect immunofluorescence and by immunoblotting in developing, adult and regenerating tail skeletal muscle of newts Pleurodeles waltl and Notophthalmus viridescens. In this study, a monoclonal antibody H-5A3 directed against the C-terminal region (residues 3357-3660) and a polyclonal antibody raised to the central domain (residues 1173-1738) of the chicken skeletal muscle dystrophin were used. Western blot analysis showed that these antibodies recognized a 400 kDa band of dystrophin (and may be of dystrophin-related protein) in the adult muscle tissues and in newt tail regenerates. During skeletal muscle differentiation or epimorphic regeneration (blastema), anti-dystrophin immunoreactivity gradually accumulated over the periphery of the myofibers. Dystrophin and laminin were first and concomitantly observed at the ends of the newly formed myotubes where they were anchored on connective tissue septa or bone processes by dystrophin-rich myotendinous structures. It is noteworthy that neuromuscular junctions, which most probably also contain dystrophin, are established in urodeles near the ends of the myofibers as shown by histochemical localization of AChE activity or fluorescent bungarotoxin detection of AChRs. In the stump transition zone close to the tail amputation level where tissue regeneration of injured muscle fibers took place, dystrophin staining located on the cytoplasmic surface of myofibers progressively disappeared during the dedifferentiation process which seemed to occur during muscle regeneration as suggested by electron microscopy. Furthermore, double labeling experiments using anti-dystrophin and anti-laminin antibodies showed a good correlation between the remodeling processes of the muscle fiber basal lamina and the loss of dystrophin along the sarcolemma of damaged and presumably dedifferentiating muscle cells.  相似文献   

18.
A general problem in immunocytochemistry is the development of a reliable multiple immunolabeling method when primary antibodies must be used that originate in the same species. We have developed a protocol for the immunodetection of three antigens in a single tissue preparation, using unconjugated primary antibodies raised in the same species. Immunocytochemical detection of neuronal nitric oxide synthase, calcitonin gene-related peptide, and calbindin D28k in the lung of rats demonstrated that part of the pulmonary neuroepithelial bodies are selectively contacted by at least three different nerve fiber populations. The first antigen was detected using tyramide signal amplification, a very sensitive method allowing a dilution of the first primary antibody far beyond the detection limit of fluorescently labeled secondary antibodies. The second antigen was visualized by a fluorophore-conjugated secondary monovalent Fab antibody that at the same time blocks the access of the third secondary antibody to the second primary antibody. Moreover, the monovalence of the Fab fragment prevents the third primary antibody from binding with the second-step secondary antibody. The triple staining technique described here is generally applicable, uses commercially available products only, and allows the detection of three antigens in the same preparation with primary antibodies that are raised in the same species.  相似文献   

19.
Catalase, the classical peroxisomal marker enzyme, decomposes hydrogen peroxide and is involved in the antioxidant defense mechanisms of mammalian cells. In addition, catalase can oxidize, by means of its peroxidatic activity, a variety of substrates such as methanol and ethanol, producing the corresponding aldehydes. The involvement of brain catalase in the oxidation of ethanol is well established, and severe afflictions of the CNS in hereditary peroxisomal diseases (e.g., Zellweger syndrome) are well known. Whereas the distribution of catalase in the CNS has been investigated by enzyme histochemistry and immunohistochemistry (IHC), very little is known about the exact localization of catalase mRNA in brain. Here we report the application of a tyramine/CARD (catalyzed reporter deposition)-enhanced nonradioactive in situ hybridization (ISH) protocol for detection of catalase mRNA in sections of perfusion-fixed, paraffin-embedded rat brain. Catalase mRNA could be demonstrated in a large number of neurons throughout the rat brain as a distinct cytoplasmic staining signal with excellent morphological resolution. Compared to our standard ISH protocol, the CARD-enhanced protocol for catalase mRNA detection in rat brain showed higher sensitivity and significantly better signal-to-noise ratio. In parallel IHC experiments, using an antigen retrieval method consisting of combined trypsin digestion and microwave treatment of paraffin sections, the catalase antigen was found as distinct cytoplasmic granules in most catalase mRNA-positive neurons. In addition, catalase-positive granules, presumably peroxisomes, were found by confocal laser scanning microscopy in glial cells, which were identified by double labeling immunofluorescence for GFAP and CNPase for astroglial cells and oligodentrocytes, respectively. The excellent preservation of morphology and sensitive detection of both mRNA and protein in our preparations warrant the application of the protocols described here for systematic studies of catalase and other peroxisomal proteins in diverse pathological conditions such as Alzheimer's disease and aging.  相似文献   

20.
The role played by either of the two differentiated mammary epithelial cell types in human breast cancer progression is currently not defined. This work addresses the question of whether the mammary tumor suppressor gene product BRCA1 is localized in basal and/or luminal epithelial cells in noncancerous outgrowth cultured from breast organoids. Primary epithelial cell outgrowths from ductal and alveolar preparations were directly employed to facilitate small-scale analysis under conditions closely approximating intact tissue. BRCA1 immunofluorescence was detected for the most part in cell nuclei of the epithelial outgrowth when using confocal microscopy. Nuclear staining was punctate in the cells with higher labeling intensity. Only minimal nonspecific staining was observed with mouse IgG as a negative primary antibody control or with primary antibody against the cell membrane receptor ErbB2, reported to be expressed in breast cancer, but was either not detectable or weakly expressed in normal breast tissue. Dual labeling was used to distinguish which epithelial cell type(s) stains for BRCA1. Primary monoclonal antibody against vimentin was used to identify basal cells, while antibody against cytokeratin 19 was used to identify luminal cells. Monoclonal antibody against BRCA1 was used for colabeling with each of these markers. Epifluorescence microscopy revealed BRCA1 immunoreactivity in both basal and luminal interphase cells. BRCA1 immunofluorescence was diffusely located about the chromosome mass during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号