首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

2.
Gap junctions in AII amacrine cells of mammalian retina participate in the coordination of the rod and cone signaling pathway involved in visual adaptation. Upon stimulation by light, released dopamine binds to D(1) receptors on AII amacrine cells leading to increased intracellular cAMP (cyclic adenosine monophosphate) levels. AII amacrine cells express the gap junctional protein connexin36 (Cx36). Phosphorylation of Cx36 has been hypothesized to regulate gap junctional activity of AII amacrine cells. However, until now in vivo phosphorylation of Cx36 has not been reported. Indeed, it had been concluded that Cx36 in bovine retina is not phosphorylated, but in vitro phosphorylation for Cx35, the bass ortholog of Cx36, had been shown. To clarify this experimental discrepancy, we examined protein kinase A (PKA)-induced phosphorylation of Cx36 in mouse retina as a possible mechanism to modulate the extent of gap junctional coupling. The cytoplasmic domains of Cx36 and the total Cx36 protein were phosphorylated in vitro by PKA. Mass spectroscopy revealed that all four possible PKA consensus motifs were phosphorylated; however, domains point mutated at the sites in question showed a prevalent usage of Ser-110 and Ser-293. Additionally, we demonstrated that Cx36 was phosphorylated in cultured mouse retina. Furthermore, activation of PKA increased the level of phosphorylation of Cx36. cAMP-stimulated, PKA-mediated phosphorylation of Cx36 protein was accompanied by a decrease of tracer coupling between AII amacrine cells. Our results link increased phosphorylation of Cx36 to down-regulation of permeability through gap junction channels mediating light adaptation in the retina.  相似文献   

3.
A J Garton  N K Tonks 《The EMBO journal》1994,13(16):3763-3771
The protein tyrosine phosphatase PTP-PEST is an 88 kDa cytosolic enzyme which is ubiquitously expressed in mammalian tissues. We have expressed PTP-PEST using recombinant baculovirus, and purified the protein essentially to homogeneity in order to investigate phosphorylation as a potential mechanism of regulation of the enzyme. PTP-PEST is phosphorylated in vitro by both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) at two major sites, which we have identified as Ser39 and Ser435. PTP-PEST is also phosphorylated on both Ser39 and Ser435 following treatment of intact HeLa cells with TPA, forskolin or isobutyl methyl xanthine (IBMX). Phosphorylation of Ser39 in vitro decreases the activity of PTP-PEST by reducing its affinity for substrate. In addition, PTP-PEST immunoprecipitated from TPA-treated cells displayed significantly lower PTP activity than enzyme obtained from untreated cells. Our results suggest that both PKC and PKA are capable of phosphorylating, and therefore inhibiting, PTP-PEST in vivo, offering a mechanism whereby signal transduction pathways acting through either PKA or PKC may directly influence cellular processes involving reversible tyrosine phosphorylation.  相似文献   

4.
Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.  相似文献   

5.
Several recent studies have shown that Ca2+/calmodulin-dependent protein kinase I (CaMKI) is phosphorylated and activated by a protein kinase (CaMKK) that is itself subject to regulation by Ca2+/calmodulin. In the present study, we demonstrate that this enzyme cascade is regulated by cAMP-mediated activation of cAMP-dependent protein kinase (PKA). In vitro, CaMKK is phosphorylated by PKA and this is associated with inhibition of enzyme activity. The major site of phosphorylation is threonine 108, although additional sites are phosphorylated with lower efficiency. In vitro, CaMKK is also phosphorylated by CaMKI at the same sites as PKA, suggesting that this regulatory phosphorylation might play a role as a negative-feedback mechanism. In intact PC12 cells, activation of PKA with forskolin resulted in a rapid inhibition of both CaMKK and CaMKI activity. In hippocampal slices CaMKK was phosphorylated under basal conditions, and activation of PKA led to an increase in phosphorylation. Two-dimensional phosphopeptide mapping indicated that activation of PKA led to increased phosphorylation of multiple sites including threonine 108. These results indicate that in vitro and in intact cells the CaMKK/CaMKI cascade is subject to inhibition by PKA-mediated phosphorylation of CaMKK. The phosphorylation and inhibition of CaMKK by PKA is likely to be involved in modulating the balance between cAMP- and Ca2+-dependent signal transduction pathways.  相似文献   

6.
Yogo K  Ogawa T  Akiyama M  Ishida N  Takeya T 《FEBS letters》2002,531(2):132-136
The gap junctional intercellular communication mediated by Cx43 plays indispensable roles in both germ line development and postnatal folliculogenesis. In this study, we focused on the effect of follicle-stimulating hormone (FSH) on the Cx43 protein in rat primary granulosa cells and found that FSH stimulation elevated the phosphorylation in addition to the protein level of Cx43. Serine residues in the carboxyl-terminal region were exclusively phosphorylated in this system and we identified Ser365, Ser368, Ser369 and Ser373 as major phosphorylation sites by FSH stimulation. A Cx43 variant containing mutations at all these serine residues was found to severely reduce dye transfer activity when assayed in HeLa cells. The present study revealed a novel regulatory mechanism of Cx43-mediated gap junctional intercellular communication through phosphorylation in the carboxyl-terminus.  相似文献   

7.
MCM4, a subunit of a putative replicative helicase, is phosphorylated during the cell cycle, at least in part by cyclin-dependent kinases (CDK), which play a central role in the regulation of DNA replication. However, detailed characterization of the phosphorylation of MCM4 remains to be performed. We examined the phosphorylation of human MCM4 at Ser3, Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110 using anti-phosphoMCM4 sera. Western blot analysis of HeLa cells indicated that phosphorylation of MCM4 at these seven sites can be classified into two groups: (a) phosphorylation that is greatly enhanced in the G2 and M phases (Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110), and (b) phosphorylation that is firmly detected during interphase (Ser3). We present data indicating that phosphorylation at Thr7, Thr19, Ser32, Ser88 and Thr110 in the M phase requires CDK1, using a temperature-sensitive mutant of mouse CDK1, and phosphorylation at sites 3 and 32 during interphase requires CDK2, using a dominant-negative mutant of human CDK2. Based on these results and those from in vitro phosphorylation of MCM4 with CDK2/cyclin A, we discuss the kinases responsible for MCM4 phosphorylation. Phosphorylated MCM4 detected using anti-phospho sera exhibited different affinities for chromatin. Studies on the nuclear localization of chromatin-bound MCM4 phosphorylated at sites 3 and 32 suggested that they are not generally colocalized with replicating DNA. Unexpectedly, MCM4 phosphorylated at site 32 was enriched in the nucleolus through the cell cycle. These results suggest that phosphorylation of MCM4 has several distinct and site-specific roles in the function of MCM during the mammalian cell cycle.  相似文献   

8.
Phosphorylation of connexins is an important mechanism regulating gap junction channels. However, the role(s) of connexin (Cx) phosphorylation in vivo are largely unknown. Here, we showed by mass spectrometry that Ser-395 in the C terminus of chicken Cx50 was phosphorylated in the lens. Ser-395 is located within a PKA consensus site. Analyses of Cx50 phosphorylation by two-dimensional thin layer chromatography tryptic phosphopeptide profiles suggested that Ser-395 was targeted by PKA in vivo. PKA activation increased both gap junction dye coupling and hemichannel dye uptake in a manner not involving increases in total Cx50 expression or relocation to the cell surface or gap junctional plaques. Single channel recordings indicated PKA enhanced transitions between the closed and ~200-pS open state while simultaneously reducing transitions between this open state and a ~65-pS subconductance state. The mutation of Ser-395 to alanine significantly attenuated PKA-induced increases in dye coupling and uptake by Cx50. However, channel records indicated that phosphorylation at this site was unnecessary for enhanced transitions between the closed and ~200-pS conductance state. Together, these results suggest that Cx50 is phosphorylated in vivo by PKA at Ser-395 and that this event, although unnecessary for PKA-induced alterations in channel conductance, promotes increased dye permeability of Cx50 channels, which plays an important role in metabolic coupling and transport in lens fibers.  相似文献   

9.
Recent evidence suggests that K(+) channels composed of Kv4.2 alpha-subunits underlie a transient current in hippocampal CA1 neurons and ventricular myocytes, and activation of the cAMP second messenger cascade has been shown to modulate this transient current. We determined if Kv4.2 alpha-subunits were directly phosphorylated by cAMP-dependent protein kinase (PKA). The intracellular domains of the amino and carboxyl termini of Kv4.2 were expressed as glutathione S-transferase fusion protein constructs; we observed that both of these fusion proteins were substrates for PKA in vitro. By using phosphopeptide mapping and amino acid sequencing, we identified PKA phosphorylation sites on the amino- and carboxyl-terminal fusion proteins corresponding to Thr(38) and Ser(552), respectively, within the Kv4.2 sequence. Kinetic characterization of the PKA sites demonstrated phosphorylation kinetics comparable to Kemptide. To evaluate PKA site phosphorylation in situ, phospho-selective antisera for each of the sites were generated. By using COS-7 cells expressing an EGFP-Kv4.2 fusion protein, we observed that stimulation of the endogenous PKA cascade resulted in an increase in phosphorylation of Thr(38) and Ser(552) within Kv4.2 in the intact cell. We also observed modulation of PKA phosphorylation at these sites within Kv4.2 in hippocampal area CA1. These results provide insight into likely sites of regulation of Kv4.2 by PKA.  相似文献   

10.
Ser55 of neurofilament L (NF-L) is reported to be partly phosphorylated in neurons and to be phosphorylated by cyclic AMP-dependent protein kinase (PKA). Bovine NF-L was phosphorylated by PKA in a low concentration of MgCl2 (0.3 mM) and digested by trypsin. Trypsin-digested fragments were assigned by MALDI/ TOF (matrix-assisted laser desorption and ionization/ time-of-flight) mass spectrometry. Phosphorylation sites were found at Ser41, Ser55, and Ser62 in the head region, with Ser55 considered the preferred site. A site-specific phosphorylation-dependent antibody against Ser55 rendered NF-L phosphorylated at Ser55 detectable in primary cultured rat neurons. One-hour treatment with 20 nM okadaic acid increased the phosphorylation level of Ser55, and co-treatment with 10 microM forskolin enhanced it. However, forskolin alone did not elevate the phosphorylation level. As a consequence, NF-L may be phosphorylated at Ser55 by PKA or by a PKA-like kinase in vivo; however, the phosphorylation level of Ser55 may be modulated by certain phosphatases sensitive to okadaic acid.  相似文献   

11.
DAPK1 and DAPK2 are calmodulin (CaM)-regulated protein kinases that share a high degree of homology in their catalytic and CaM regulatory domains. Both kinases function as tumor suppressors, and both have been implicated in autophagy regulation. Over the years, common regulatory mechanisms for the two kinases as well as kinase-specific ones have been identified. In a recent work, we revealed that DAPK2 is phosphorylated on Ser289 by the metabolic sensor AMPK, and that this phosphorylation enhances DAPK2 catalytic activity. Notably, Ser289 is conserved between DAPK1 and DAPK2, and was previously found to be phosphorylated in DAPK1 by RSK. Intriguingly, Ser289 phosphorylation was conversely reported to inhibit the pro-apoptotic activity of DAPK1 in cells. However, as the direct effect of this phosphorylation on DAPK1 catalytic activity was not tested, indirect effects were not excluded. Here, we compared Ser289 phosphorylation of the two kinases in the same cells and found that the intracellular signaling pathways that lead to Ser289 phosphorylation are mutually-exclusive and different for each kinase. In addition, we found that Ser289 phosphorylation in fact enhances DAPK1 catalytic activity, similar to the effect on DAPK2. Thus, Ser289 phosphorylation activates both DAPK1 and DAPK2, but in response to different intracellular signaling pathways.  相似文献   

12.
Bhave G  Zhu W  Wang H  Brasier DJ  Oxford GS  Gereau RW 《Neuron》2002,35(4):721-731
The capsaicin receptor, VR1 (also known as TRPV1), is a ligand-gated ion channel expressed on nociceptive sensory neurons that responds to noxious thermal and chemical stimuli. Capsaicin responses in sensory neurons exhibit robust potentiation by cAMP-dependent protein kinase (PKA). In this study, we demonstrate that PKA reduces VR1 desensitization and directly phosphorylates VR1. In vitro phosphorylation, phosphopeptide mapping, and protein sequencing of VR1 cytoplasmic domains delineate several candidate PKA phosphorylation sites. Electrophysiological analysis of phosphorylation site mutants clearly pinpoints Ser116 as the residue responsible for PKA-dependent modulation of VR1. Given the significant roles of VR1 and PKA in inflammatory pain hypersensitivity, VR1 phosphorylation at Ser116 by PKA may represent an important molecular mechanism involved in the regulation of VR1 function after tissue injury.  相似文献   

13.
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA.  相似文献   

14.
Endothelial nitric-oxide synthase (eNOS) is regulated by signaling pathways involving multiple sites of phosphorylation. The coordinated phosphorylation of eNOS at Ser(1179) and dephosphorylation at Thr(497) activates the enzyme, whereas inhibition results when Thr(497) is phosphorylated and Ser(1179) is dephosphorylated. We have identified two further phosphorylation sites, at Ser(617) and Ser(635), by phosphopeptide mapping and matrix-assisted laser desorption ionization time of flight mass spectrometry. Purified protein kinase A (PKA) phosphorylates both sites in purified eNOS, whereas purified Akt phosphorylates only Ser(617). In bovine aortic endothelial cells, bradykinin (BK), ATP, and vascular endothelial growth factor stimulate phosphorylation of both sites. BK-stimulated phosphorylation of Ser(617) is Ca(2+)-dependent and is partially inhibited by LY294002 and wortmannin, phosphatidylinositol 3-kinase inhibitors, suggesting signaling via Akt. BK-stimulated phosphorylation of Ser(635) is Ca(2+)-independent and is completely abolished by the PKA inhibitor, KT5720, suggesting signaling via PKA. Activation of PKA with isobutylmethylxanthine also causes Ser(635), but not Ser(617), phosphorylation. Mimicking phosphorylation at Ser(635) by Ser to Asp mutation results in a greater than 2-fold increase in activity of the purified protein, whereas mimicking phosphorylation at Ser(617) does not alter maximal activity but significantly increases Ca(2+)-calmodulin sensitivity. These data show that phosphorylation of both Ser(617) and Ser(635) regulates eNOS activity and contributes to the agonist-stimulated eNOS activation process.  相似文献   

15.
Connexin (Cx) 45.6, an avian counterpart of rodent Cx50, is phosphorylated in vivo, but the sites and function of the phosphorylation have not been elucidated. Our peptide mapping experiments showed that the Ser(363) site in the carboxyl (COOH) terminus of Cx45.6 was phosphorylated and that this site is within casein kinase (CK) II consensus sequence, although showing some similarity to CKI sequence. The peptide containing Ser(363) could be phosphorylated in vitro by CKII, but not by CKI. Furthermore, CKII phosphorylated Cx45.6 in embryonic lens membrane and the fusion protein containing the COOH terminus of Cx45.6. Two-dimensional peptide mapping experiments showed that one of the Cx45.6 peptides phosphorylated in vivo migrated to the same spot as one of those phosphorylated by CKII in vitro. Furthermore, CKII activity could be detected in lens lysates. To assess the function of this phosphorylation event, exogenous wild type and mutant Cx45.6 (Ser(363) --> Ala) were expressed in lens primary cultures by retroviral infection. The mutant Cx45.6 was shown to be more stable having a longer half-life compared with wild type Cx45.6. Together, the evidence suggests that CKII is likely a kinase responsible for the Ser(363) phosphorylation, leading to the destablization and degradation of Cx45.6. The connexin degradation induced by phosphorylation has a broad functional significance in the regulation of gap junctions in vivo.  相似文献   

16.
Kang HY  Lee S  Park SG  Yu J  Kim Y  Jung G 《The Biochemical journal》2006,398(2):311-317
Protein-protein interactions can be regulated by protein modifications such as phosphorylation. Some of the phosphorylation sites (Ser155, Ser162 and Ser170) of HBV (hepatitis B virus) Cp have been discovered and these sites are implicated in the regulation of viral genome encapsidation, capsid localization and nucleocapsid maturation. In the present report, the dimeric form of HBV Cp was phosphorylated by PKA (protein kinase A), but not by protein kinase C in vitro, and the phosphorylation of dimeric Cp facilitated HBV core assembly. Matrix-assisted laser-desorption ionization-time-of-flight analysis revealed that the HBV Cp was phosphorylated at Ser87 by PKA. This was further confirmed using a mutant HBV Cp with S87G mutation. The S87G mutation inhibited the phosphorylation and, as a result, the in vitro HBV core assembly was not facilitated by PKA. In addition, when either pCMV/FLAG-Core(WT) or pCMV/FLAG-Core(S87G) was transfected into HepG2 cells, few mutant Cps (S87G) assembled into capsids compared with the wild-type (WT) Cps, although the same level of total Cps was expressed in both cases. In conclusion, PKA facilitates HBV core assembly through phosphorylation of the HBV Cp at Ser87.  相似文献   

17.
The cAMP-PKA cascade is a recognized signaling pathway important in inhibition of inflammatory injury events such as endothelial permeability and leucocyte trafficking, and a critical target of regulation is believed to be inhibition of Rho proteins. Here, we hypothesize that PKA directly phosphorylates GTP dissociation inhibitor (GDI) to negatively regulate Rho activity. Amino acid analysis of GDIalpha showed two potential protein kinase A (PKA) phosphorylation motifs, Ser(174) and Thr(182). Using in vitro kinase assay and mass spectrometry, we found that the purified PKA catalytic subunit phosphorylated GDIalpha-GST fusion protein and PKA motif-containing GDIalpha peptide at Ser(174), but not Thr(182). Transfection of COS-7 cells with mutated full-length GDIalpha at Ser(174) to Ala(174) (GDIalpha-Ser(174A)) abrogated the ability of cAMP to phosphorylate GDIalpha. However, mutation of Thr(182) to Ala(182) (GDIalpha-Thr(182A)) did not abrogate, and cAMP increased phosphorylation of GDIalpha to a similar extent as wild-type GDIalpha transfectants. The mutant GDIalpha-Ser(174A), but not GDIalpha-Thr(182A), was unable to prevent cAMP-mediated inhibition of Rho-dependent serum-response element reporter activity. Furthermore, the mutant GDIalpha-Ser(174A) was unable to prevent the thrombin-induced RhoA activation. Coprecipitation studies indicated that neither mutation of the PKA consensus sites nor phosphorylation alter GDIalpha binding with RhoA, suggesting that phosphorylation of Ser(174) regulated preformed GDIalpha-RhoA complexes. The findings provide strong support that the selective phosphorylation at Ser(174) by PKA is a signaling pathway in the negative regulation of RhoA activity and therefore could be a potential protective mechanism for inflammatory injury.  相似文献   

18.
Functional and behavioral tolerance to chronic benzodiazepine (BZ) exposure has been associated with an uncoupling of the BZ and GABA binding sites. As in rats exposed to BZ for periods of a week or longer, recombinant GABA(A) receptors (GABARs) expressed in Sf9 cells lose the normally observed allosteric enhancement of [3H]flunitrazepam binding by GABA agonists, which is measured in homogenized membranes after a few hours exposure to pharmacological doses of agonist BZ. Treatment of Sf9 cells expressing recombinant GABAR with various drugs that inhibit protein kinase A (PKA), but not protein kinase C (PKC), resulted in an uncoupling of the BZ and GABA binding sites; whereas promotion of phosphorylation by PKA, but not PKC, favored coupling and recoupling. However, mutation of the only PKA phosphorylation site expressed from among the subunits proved that direct phosphorylation of the GABAR was not involved in either coupling after chronic BZ exposure or reversal of uncoupling after exposure to the competitive BZ antagonist, flumazenil. Osmotic-shock of cell membrane homogenates to lyse intracellular compartments reversed uncoupling, and uncoupling can be replicated in untreated cells by performing membrane binding assays in an acidic environment, suggesting that GABARs become internalized into an acidic intracellular environment where normal BZ binding occurs, but that potentiation by GABA is hindered. The internalization of receptors was shown by immunofluorescence after chronic exposure to either BZ or the PKA inhibitor H-89.  相似文献   

19.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

20.
Cyclic AMP-dependent protein kinase (PKA) enhances regulated exocytosis in neurons and most other secretory cells. To explore the molecular basis of this effect, known exocytotic proteins were screened for PKA substrates. Both cysteine string protein (CSP) and soluble NSF attachment protein-alpha (alpha-SNAP) were phosphorylated by PKA in vitro, but immunoprecipitation of cellular alpha-SNAP failed to detect (32)P incorporation. In contrast, endogenous CSP was phosphorylated in synaptosomes, PC12 cells, and chromaffin cells. In-gel kinase assays confirmed PKA to be a cellular CSP kinase, with phosphorylation occurring on Ser(10). PKA phosphorylation of CSP reduced its binding to syntaxin by 10-fold but had little effect on its interaction with HSC70 or G-protein subunits. Furthermore, an in vivo role for Ser(10) phosphorylation at a late stage of exocytosis is suggested by analysis of chromaffin cells transfected with wild type or non-phosphorylatable mutant CSP. We propose that PKA phosphorylation of CSP could modulate the exocytotic machinery, by selectively altering its availability for protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号