首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Conventional wisdom ties the origin and early evolution of the genus Homo to environmental changes that occurred near the end of the Pliocene. The basic idea is that changing habitats led to new diets emphasizing savanna resources, such as herd mammals or underground storage organs. Fossil teeth provide the most direct evidence available for evaluating this theory. In this paper, we present a comprehensive study of dental microwear in Plio-Pleistocene Homo from Africa. We examined all available cheek teeth from Ethiopia, Kenya, Tanzania, Malawi, and South Africa and found 18 that preserved antemortem microwear. Microwear features were measured and compared for these specimens and a baseline series of five extant primate species (Cebus apella, Gorilla gorilla, Lophocebus albigena, Pan troglodytes, and Papio ursinus) and two protohistoric human foraging groups (Aleut and Arikara) with documented differences in diet and subsistence strategies. Results confirmed that dental microwear reflects diet, such that hard-object specialists tend to have more large microwear pits, whereas tough food eaters usually have more striations and smaller microwear features. Early Homo specimens clustered with baseline groups that do not prefer fracture resistant foods. Still, Homo erectus and individuals from Swartkrans Member 1 had more small pits than Homo habilis and specimens from Sterkfontein Member 5C. These results suggest that none of the early Homo groups specialized on very hard or tough foods, but that H. erectus and Swartkrans Member 1 individuals ate, at least occasionally, more brittle or tough items than other fossil hominins studied.  相似文献   

3.
The reconstructed taphonomic and paleoenvironmental contexts of a ca. 4 million-year-old partial hominid skeleton (Stw 573) from Sterkfontein Member 2 are described through presentation of the results of our analyses of the mammalian faunal assemblage associated stratigraphically with the hominid. The assemblage is dominated by cercopithecoids (Parapapio and Papio) and felids (Panthera pardus, P. leo, Felis caracal, and Felidae indet.), based on number of identified specimens, minimum number of elements and, minimum number of individuals. In addition, the assemblage is characterized by a number of partial skeletons and/or antimeric sets of bones across all taxonomic groups. There is scant indication of carnivore chewing in the assemblage. These observations, in addition to other taphonomic data, suggest that the remains of many animals recovered in Member 2 are from individuals that entered the cave on their own-whether accidentally by falling through avens connecting the cave to the ground surface above or by intentional entry-and were then unable to escape, rather than primarily through systematic collection by a biotic, bone-accumulating agent. The taphonomic conclusion that animals with climbing proclivities (i.e., primates and carnivores) are preferentially preserved over other taxa, ultimately because of those proclivities, urges caution in assessing the fidelity of the assemblage for reconstruction of the Member 2 paleoenvironment. With that caveat, we infer that the Member 2 paleoenvironment was typified by rolling, rock-littered and brush- and scrub-covered hills, indicated by the abundant F. caracal and cercopithecoid fossils recovered and the identified presence of the extinct Caprinae Makapania broomi. In addition, the valley bottom may have retained standing water year-round, perhaps supporting some tree cover--a setting suitable for the well-represented ambush predator P. pardus and suggested by the presence of Alcelaphini. Finally, the reconstructed taphonomic and paleoenvironmental settings of Sterkfontein Member 2 are compared to penecontemporaneous sites in South and East Africa.  相似文献   

4.
Three sympatric fossil cercopithecoid genera (Cercopithecoides, Parapapio, and Theropithecus) occur in Members 3 and 4 at the Makapansgat Limeworks hominin locality, South Africa, and their presence in a single ecosystem suggest a certain degree of ecological and/or dietary differentiation between taxa. Here, we explore the extent of dietary niche separation amongst these taxa using stable isotope (13C/12C, 18O/16O) and trace-element (Sr, Ba, Ca) analyses of fossil tooth enamel. In particular we searched for evidence of subtle niche separation between the more closely related, morphologically similar taxa of the genus Parapapio, as uncertainties exist around their taxonomy and taxonomic identification. Given these uncertainties, craniometric analyses were also performed to ground the dietary interpretations in a morphological context. The results found no clear taxonomic signal in the craniometric data for the Parapapio sample, and further indicate that this sample was no more variable morphologically than a single, geographically circumscribed, extant chacma baboon sample. In contrast, two overlapping dietary ecologies were found within this same Makapansgat Parapapio sample. Additionally, two widely differing dietary ecologies were found within the Cercopithecoides williamsi sample, while results for Theropithecus darti indicate a predominantly C4 diet. Hence, although biogeochemical dietary indicators point towards distinct dietary ecologies within and between fossil genera at Makapansgat, within the genus Parapapio disjunctions exist between the dietary categories and the taxonomic assignment of specimens.  相似文献   

5.
Fossil assemblages from the Pliocene and Pleistocene of southern Africa were seriated in order to give a better idea of their relative chronology. Time-sensitive mammals were selected for calculation of the Faunal Resemblance Index among 17 site units. On the basis of a logistical seriation and subsequent site analysis, the following sequence of sites was deemed most probable: Makapansgat Member 3, Makapansgat Member 4, Taung Dart deposits, Sterkfontein Member 4 and Taung Hrdli?ka deposits, Sterkfontein Member 5 (in part) and Kromdraai B, Kromdraai A and Swartkrans Member 1, Swartkrans Member 2, Swartkrans Member 3, Plovers Lake, Cornelia, Elandsfontein Main Site, Cave of Hearths Acheulian levels, Florisbad and Equus Cave and Klasies River Mouth. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The phylogenetic relationships of early Pleistocene Homo crania from the South African sites of Swartkrans and Sterkfontein were investigated through cladistic analyses of 99 morphological characters. The Swartkrans Member 1 specimen SK 847 and the Stw 53 cranium from Sterkfontein Member 5A were treated as separate operational taxonomic units (OTUs), distinct from the three species of early Homo-H. erectus, H. habilis, and H. rudolfensis-that are recognized from the Plio-Pleistocene deposits of East Africa. The cladistic analyses differed in the treatment of the South African OTUs (separate Swartkrans and Sterkfontein OTUs vs. a single Swartkrans+Sterkfontein OTU). PAUP 4.0 was used to construct cladograms and address hypotheses about relationships. In the analysis that treated the South African specimens as a single OTU, the position of that OTU was stable as a separate branch on the Homo clade between H. rudolfensis and [H. habilis+(H. erectus+H. sapiens)]. When SK 847 and Stw 53 were treated as separate OTUs, the majority of most parsimonious trees indicated that they were positioned in similar positions as the combined South African Homo OTU; that is, as separate branches between H. rudolfensis and [H. habilis+(H. erectus+H. sapiens)], with the Swartkrans OTU generally occupying a more derived position. The position of the Sterkfontein OTU was more stable than that of the Swartkrans OTU, which was found in several other positions among the minimum length trees. Running the analyses with only those characters preserved by SK 847 and Stw 53 resulted in similar topologies for minimum length trees, although the positions of Stw 53, SK 847, and H. habilis exchanged places in some trees. In no case was an exclusive sister relationship between either South African OTU and a particular species of Homo supported statistically. Both South African OTUs differ from H. habilis in the fewest number of cladistic characters.  相似文献   

7.
As a well-preserved juvenile and the type specimen of Australopithecus africanus, the Taung child figures prominently in taxonomic, ontogenetic, and phylogenetic analyses of fossil hominins. Despite general agreement about allocation of Sterkfontein and Makapansgat fossils to this species, limited morphological comparisons have been possible between these adult specimens and the juvenile Taung. Here, we used developmental simulation to estimate the adult form of the Taung child, and directly compare its morphology to that of other fossil hominins. Specimens were represented by 50 three-dimensional landmarks superimposed by generalized Procrustes analysis. The simulation process applied developmental trajectories from extant hominine species to the Taung fossil in order to generate its adult form. Despite differences found in the developmental patterns of these modern species, simulations tested on extant juveniles-transforming them into "adults" using trajectories from other species-revealed that these differences have negligible impact on adult morphology. This indicates that morphology already present by occlusion of the first permanent molar is the primary determinant of adult form, thereby supporting use of extant trajectories to estimate the morphology of an extinct species. The simulated Taung adult was then compared to other adult fossils. As these comparisons required assumptions about the pattern and magnitude of developmental change, additional analyses were performed to evaluate these two parameters separately. Results of all analyses overwhelmingly rejected the possibility that the Taung child was a juvenile robust australopith, but were consistent with the hypothesis that the Taung and Sterkfontein fossils are conspecific. Between Sts 5 and Sts 71, the latter is more likely to resemble the adult form of the Taung child.  相似文献   

8.
This study employs dental microwear texture analysis to reconstruct the diets of two families of subfossil lemurs from Madagascar, the archaeolemurids and megaladapids. This technique is based on three-dimensional surface measurements utilizing a white-light confocal profiler and scale-sensitive fractal analysis. Data were recorded for six texture variables previously used successfully to distinguish between living primates with known dietary differences. Statistical analyses revealed that the archaeolemurids and megaladapids have overlapping microwear texture signatures, suggesting that the two families occasionally depended on resources with similar mechanical properties. Even so, moderate variation in most attributes is evident, and results suggest potential differences in the foods consumed by the two families. The microwear pattern for the megaladapids indicates a preference for tougher foods, such as many leaves, while that of the archaeolemurids is consistent with the consumption of harder foods. The results also indicate some intraspecific differences among taxa within each family. This evidence suggests that the archaeolemurids and megaladapids, like many living primates, likely consumed a variety of food types.  相似文献   

9.
Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids’ diet and ecology.  相似文献   

10.
Makapansgat Limeworks Cave is a well-known Australopithecus africanus bearing locality that has spawned a considerable amount of paleoecological research because of its hominin component. Most recently, the paleoecology of this Plio-Pleistocene site has been studied by determining the diet and habitat of other extinct taxa, particularly the bovids. The diets of seven bovids (Aepyceros sp., Gazella vanhoepeni, Makapania broomi, Parmularius braini, Redunca darti, Tragelaphus sp. aff. T. angasii, and Tragelaphus pricei) have now been classified using taxonomic uniformitarianism, ecomorphology, stable carbon isotopes, and mesowear analysis. Here, dental microwear is applied to the same bovids for additional comparison and to further elucidate the strengths and weaknesses of each method. The different dietary proxy methods noted provide a temporal continuum, with genetic signals such as ecomorphology and taxonomic uniformitarianism indicating behavioral adaptations over geologic time, while nongenetic data such as stable carbon isotopes and mesowear reflect different aspects of average diet over extended portions of an animal's life, and dental microwear provides dietary snapshots.Microwear separated an extant baseline of ten bovid species into expected dietary categories and the Makapansgat bovids clearly fell into two groups with the same degree of separation as between extant grazers and browsers. The results indicate that a multidisciplinary approach produces a more accurate and robust reconstruction of past diets. In sum, the microwear analysis is in-line with the isotope and mesowear results, which suggest a stronger browsing component than either taxonomic uniformitarianism or ecomorphology imply.  相似文献   

11.
Low-magnification microwear techniques have been used effectively to infer diets within many unrelated mammalian orders, but the extent to which patterns are comparable among such different groups, including long extinct mammal lineages, is unknown. Microwear patterns between ecologically equivalent placental and marsupial mammals are found to be statistically indistinguishable, indicating that microwear can be used to infer diet across the mammals. Microwear data were compared to body size and molar shearing crest length in order to develop a system to distinguish the diet of mammals. Insectivores and carnivores were difficult to distinguish from herbivores using microwear alone, but combining microwear data with body size estimates and tooth morphology provides robust dietary inferences. This approach is a powerful tool for dietary assessment of fossils from extinct lineages and from museum specimens of living species where field study would be difficult owing to the animal’s behavior, habitat, or conservation status.  相似文献   

12.
The fossil cercopithecoid material from South Africa has been reviewed according to sites and species. The 722 specimens considered comprise 6 genera including 16 taxa and come from 16 sites. Aspects of taxonomic controversy and interest are discussed. In particular, the Parapapio material from Makapansgat has been re-evaluated and the taxonomy of the genus Simopithecus is reconsidered. A number of proposals are put forward. Four new specimens from Makapansgat and one from Sterkfontein are described; a previously partially described specimen from Taung is re-described in detail.  相似文献   

13.
14.
15.
Dental microwear analysis has proven to be a valuable tool for the reconstruction of aspects of diet in early hominins. That said, sample sizes for some groups are small, decreasing our confidence that results are representative of a given taxon and making it difficult to assess within-species variation. Here we present microwear texture data for several new specimens of Homo habilis and Paranthropus boisei from Olduvai Gorge, bringing sample sizes for these species in line with those published for most other early hominins. These data are added to those published to date, and microwear textures of the enlarged sample of H. habilis (n = 10) and P. boisei (n = 9) are compared with one another and with those of other early hominins. New results confirm that P. boisei does not have microwear patterns expected of a hard-object specialist. Further, the separate texture complexity analyses of early Homo species suggest that Homo erectus ate a broader range of foods, at least in terms of hardness, than did H. habilis, P. boisei, or the “gracile” australopiths studied. Finally, differences in scale of maximum complexity and perhaps textural fill volume between H. habilis and H. erectus are noted, suggesting further possible differences between these species in diet.  相似文献   

16.
Tooth microwear studies have been carried out for several reasons in the last decade. Most effort has been put into categorizing wear types that reflect dietary preferences in order to reconstruct the diet of extinct species. Several studies have shown that, for primates, carnivores and ruminants, it is possible to differentiate statistically the microwear associated with the major dietary adaptations in the group. It has further been found that more subtle dietary changes, such as seasonal ones, can be picked up if the sampling is good enough. It is important to recognize that, although it may be a valuable and legitimate concern to study the specific causes of different microwear patterns, that information is not essential for dietary reconstruction, if different microwear states can be shown empirically to correspond to different dietary regimes. Image enhancement and optical diffraction methods offer hope of automated scanning of large samples. This will be a major benefit as the methods currently in use are labor-intensive and time-consuming. Finally, it is urged that as many methods as possible be used to solve problems of dietary reconstruction.  相似文献   

17.
Food consumption causes distinct microwear patterns on teeth, especially in mammals that actively masticate food. Here we perform a microwear analysis to assess the relationships between diet and microwear features of diverse Carnivora. Our database includes approximately 230 individuals of 17 extant species having different diets. We analyse both slicing and grinding facets of M1 and m1. The proposed method is reproducible and allows the differentiation, especially on slicing facets, of microwear poles that are significantly distinct from one another. In carnivorans, the microwear features mainly result from their foraging behavior and the proportion of certain food items consumed. We applied our method to extinct taxa such as the amphicyonid Amphicyon major. The results on the m1 slicing facet indicate dietary similarities between this large Miocene predator and the extant red fox; results from the m1 grinding facet do not have equivalent in extant taxa, however.  相似文献   

18.
The early Miocene catarrhine fossil record of East Africa represents a diverse and extensive adaptive radiation. It is well accepted that these taxa encompass a dietary range similar to extant hominoids, in addition to some potentially novel dietary behaviour. There have been numerous attempts to infer diet for these taxa from patterns of dental allometry and incisor and molar microwear, however, morphometric analyses until now have been restricted to the post-canine dentition. It has already been demonstrated that given the key functional role of the incisors in pre-processing food items prior to mastication, there is a positive correlation between diet and incisal curvature (Deane, A.S., Kremer, E.P., Begun, D.R., 2005. A new approach to quantifying anatomical curvatures using High Resolution Polynomial Curve Fitting (HR-PCF). Am. J. Phys. Anthropol. 128(3), 630-638.; Deane, A.S., 2007. Inferring dietary behaviour for Miocene hominoids: A high-resolution morphometric approach to incisal crown curvature. Ph.D. Dissertation. The University of Toronto.). This study seeks to re-examine existing dietary hypotheses for large-bodied early Miocene fossil catarrhines by contrasting the incisal curvature for these taxa with comparative models derived from prior studies of the correlation between extant hominoid incisor curvature and feeding behaviour. Incisor curvature was quantified for 78 fossil incisors representing seven genera, and the results confirm that early Miocene fossil catarrhines represent a dietary continuum ranging from more folivorous (i.e., Rangwapithecus) to more frugivorous (i.e., Proconsul) diets, as well as novel dietary behaviours that are potentially similar to extant ceboids (i.e., Afropithecus). Additionally, early Miocene fossil catarrhine incisors are less curved than extant hominoid incisors, indicating a general pattern of increasing mesio-distal and labial curvature through time. This pattern of morphological shifting is consistent with the Red Queen Effect (Van Valen, L., 1973. A new evolutionary law. Evol. Theory 1, 1-30), which predicts that taxa that are removed from one another by geological time, although potentially having similar diets, may exhibit differing degrees of a similar dietary adaptation (i.e., differing degrees of incisal curvature).  相似文献   

19.
Studies of dental microwear have been used to relate tooth form to function in a variety of recent and extinct mammals. Probably the most important aspect of microwear analysis is the possibility of using it to deduce the diet of extinct animals. Such deductions must be based on comparative studies of modern species with known diets, but to date, only qualitative studies have been attempted and all have been based on small samples. Here we report quantitative differences in dental microwear between primate species that are known to have different diets. Occlusal facets with different functions have previously been shown to exhibit different microwear patterns. However, the differences between facets of one species are shown to be far less than those between homologous facets of different species. Study of seven species of extant primates shows that enamel microwear can be used to distinguish between those with a mainly frugivorous diet and those with a mainly folivorous one. Microwear can also distinguish hard-object feeders from soft-fruit eaters. The microwear of Miocene Sivapithecus indicus cannot be distinguished statistically from that of the chimpanzee, but it is different from that of the other species. On this evidence S. indicus was not a hard-object feeder and the adaptive significance of its thick molar enamel is at present unknown.  相似文献   

20.
Cougars (Puma concolor) are one of only two large cats in North America to have survived the Late Pleistocene extinction (LPE), yet the specific key(s) to their relative success remains unknown. Here, we compare the dental microwear textures of Pleistocene cougars with sympatric felids from the La Brea Tar Pits in southern California that went extinct at the LPE (Panthera atrox and Smilodon fatalis), to clarify potential dietary factors that led to the cougar''s persistence through the LPE. We further assess whether the physical properties of food consumed have changed over time when compared with modern cougars in southern California. Using dental microwear texture analysis (DMTA), which quantifies surface features in three dimensions, we find that modern and Pleistocene cougars are not significantly different from modern African lions in any DMTA attributes, suggesting moderate durophagy (i.e. bone processing). Pleistocene cougars from La Brea have significantly greater complexity and textural fill volume than Panthera atrox (inferred to have primarily consumed flesh from fresh kills) and significantly greater variance in complexity values than S. fatalis. Ultimately, these results suggest that cougars already used or adopted a more generalized dietary strategy during the Pleistocene that may have been key to their subsequent success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号