首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

—In 2015–2017, attendance of 15 invasive and 22 native species of herbaceous plants by ants was studied in 6 habitats in the environs of Kyiv (Ukraine). Altogether, 14 ant species were found, of which 12 were recorded on invasive plants and 9 on native plants; 8 aphid species were found on 8 invasive plant species. Five invasive plant species (Asclepias syriaca, Heracleum mantegazzianum, Oenothera biennis, Onopordum acanthium, and Amaranthus retroflexus) were found to be attractive to ants, with over a half of all the ant workers in all the habitats being recorded on them; besides, numerous colonies of 7 aphid species were also found on these plants. These invasive plants positively affect the structure of ant assemblages since the aphid colonies provide ants with food resource. The remaining 10 invasive plant species, including 5 transformer species, were poorly visited by ants and housed no aphid colonies, with the exception of Conyza canadensis on which the non-myrmecophilous aphid Uroleucon erigeronense (Thomas, 1878) was found. Two thirds of invasive plant species had a negative effect on the structure of ant assemblages because they replaced the native plants and thus reduced the trophic resources of aphids.

  相似文献   

2.
When invasive species establish in new environments, they may disrupt existing or create new interactions with resident species. Understanding of the functioning of invaded ecosystems will benefit from careful investigation of resulting species-level interactions. We manipulated ant visitation to compare how invasive ant mutualisms affect two common plants, one native and one invasive, on a sub-tropical Indian Ocean island. Technomyrmex albipes, an introduced species, was the most common and abundant ant visitor to the plants. T. albipes were attracted to extrafloral nectaries on the invasive tree (Leucaena leucocephala) and deterred the plant’s primary herbivore, the Leucaena psyllid (Heteropsylla cubana). Ant exclusion from L. leucocephala resulted in decreased plant growth and seed production by 22% and 35%, respectively. In contrast, on the native shrub (Scaevola taccada), T. albipes frequently tended sap-sucking hemipterans, and ant exclusion resulted in 30% and 23% increases in growth and fruit production, respectively. Stable isotope analysis confirmed the more predacious and herbivorous diets of T. albipes on the invasive and native plants, respectively. Thus the ants’ interactions protect the invasive plant from its main herbivore while also exacerbating the effects of herbivores on the native plant. Ultimately, the negative effects on the native plant and positive effects on the invasive plant may work in concert to facilitate invasion by the invasive plant. Our findings underscore the importance of investigating facilitative interactions in a community context and the multiple and diverse interactions shaping novel ecosystems.  相似文献   

3.
Interspecific interactions play an important role in the success of introduced species. For example, the ‘enemy release’ hypothesis posits that introduced species become invasive because they escape top–down regulation by natural enemies while the ‘invasional meltdown’ hypothesis posits that invasions may be facilitated by synergistic interactions between introduced species. Here, we explore how facilitation and enemy release interact to moderate the potential effect of a large category of positive interactions – protection mutualisms. We use the interactions between an introduced plant (Japanese knotweed Fallopia japonica), an introduced herbivore (Japanese beetle Popillia japonica), an introduced ant (European red ant Myrmica rubra), and native ants and herbivores in riparian zones of the northeastern United States as a model system. Japanese knotweed produces sugary extrafloral nectar that is attractive to ants, and we show that both sugar reward production and ant attendance increase when plants experience a level of leaf damage that is typical in the plants’ native range. Using manipulative experiments at six sites, we demonstrate low levels of ant patrolling, little effect of ants on herbivory rates, and low herbivore pressure during midsummer. Herbivory rates and the capacity of ants to protect plants (as evidenced by effects of ant exclusion) increased significantly when plants were exposed to introduced Japanese beetles that attack plants in the late summer. Beetles were also associated with greater on‐plant foraging by ants, and among‐plant differences in ant‐foraging were correlated with the magnitude of damage inflicted on plants by the beetles. Last, we found that sites occupied by introduced M. rubra ants almost invariably included Japanese knotweed. Thus, underlying variation in the spatiotemporal distribution of the introduced herbivore influences the provision of benefits to the introduced plant and to the introduced ant. More specifically, the presence of the introduced herbivore converts an otherwise weak interaction between two introduced species into a reciprocally beneficial mutualism. Because the prospects for facilitation are linked to the prospects for enemy release in protection mutualisms, species introductions can have complex effects on existing species interactions, between both native and introduced species.  相似文献   

4.
Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.  相似文献   

5.
Ants are recognized for their abilities both to engage in mutualistic interactions with diverse taxa, and to invade and dominate habitats outside their native geographic range. Here, we review the effects of invasive ants on three guilds of mutualists: ant-dispersed plants, ant-tended arthropods, and ant-tended plants. We contrast how those three guilds are affected by invasions, how invasive ants differ from native ants in their interactions with those guilds, and how the seven most invasive ant species differ amongst themselves in those interactions. Ant-dispersed plants typically suffer from interactions with invasive ants, a result we attribute to the small size of those ants relative to native seed-dispersing ants. Effects on the ant-tended arthropods and plants were more frequently positive or non-significant, although it is unclear how often these interactions are reciprocally beneficial. For example, invasive ants frequently attack the natural enemies of these prospective mutualists even in the absence of rewards, and may attack those prospective mutualists. Many studies address whether invasive ants provide some benefit to the partner, but few have asked how invasives rank within a hierarchy of prospective mutualists that includes other ant species. Because ant invasions typically result in the extirpation of native ants, this distinction is highly relevant to predicting and managing the effects of such invasions. Interspecific comparisons suggest that invasive ants are poorer partners of ant-dispersed plants than are most other ants, equally effective partners of ant-tended arthropods, and perhaps better partners of ant-tended plants. Last, we note that the invasive ant taxa differ amongst themselves in how they affect these three mutualist guilds, and in how frequently their interactions with prospective mutualists have been studied. The red imported fire ant, Solenopsis invicta, appears particularly likely to disrupt all three mutualistic interactions, relative to the other six invasive species included in this review.  相似文献   

6.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

7.
Recent research on invasive ants suggests that their success may be facilitated by increased resources at introduced locations stemming from the emergence of novel trophic interactions with abundant honeydew-producing Hemiptera. Moreover, those Hemiptera may themselves often be introduced or invasive. To test the importance of mutualisms for invasive species, we conducted a study in the southeastern United States of factors hypothesized to affect the abundance of an invasive ant native to South America, Solenopsis invicta. The study was conducted within grazing pastures, where S. invicta can be extremely abundant while also exhibiting substantial variability in abundance. A path analysis showed that the abundance of S. invicta was strongly and positively affected by the abundance of an invasive honeydew-producing mealybug native to Asia, Antonina graminis, and by the mealybugs’ host grasses because of their strong positive effect on mealybug abundance. Abundance of the mealybug was primarily attributable to an invasive host grass native to Africa, Cynodon dactylon. The abundance of S. invicta was also positively affected by the abundance of other arthropods that they are likely to consume, and those arthropods were positively affected by the abundance of both the A. graminis host grasses and other plants. Thus the study shows that the distribution and abundance of different plant species could have important effects on the abundance of S. invicta through their effect on the ants’ food resources. The results are also consistent with the hypothesis that the emergence of novel trophic interactions among invasive species can promote the abundance of invasive ants.  相似文献   

8.
9.
The fitness advantage provided by caulinary domatia to myrmecophytes has never been directly demonstrated because most myrmecophytic species do not present any individual variation in the presence of domatia and the removal of domatia from entire plants is a destructive process. The semi-myrmecophytic tree, Humboldtia brunonis (Fabaceae: Caesalpinioideae), is an ideal species to investigate the selective advantage conferred by domatia because within the same population, some plants are devoid of domatia while others bear them. Several ant species patrol the plant for extra-floral nectar. Fruit production was found to be enhanced in domatia-bearing trees compared to trees devoid of domatia independent of the ant associate. However, this domatium effect was most conspicuous for trees associated with the populous and nomadic ant, Technomyrmex albipes. This species is a frequent associate of H. brunonis, inhabiting its domatia or building carton nests on it. Ant exclusion experiments revealed that T. albipes was the only ant to provide efficient anti-herbivore protection to the leaves of its host tree. Measures of ant activity as well as experiments using caterpillars revealed that the higher efficiency of T. albipes was due to its greater patrolling density and consequent shorter lag time in attacking the larvae. T. albipes also provided efficient anti-herbivore protection to flowers since fruit initiation was greater on ant-patrolled inflorescences than on those from which ants were excluded. We therefore demonstrated that caulinary domatia provide a selective advantage to their host-plant and that biotic defence is potentially the main fitness benefit mediated by domatia. However, it is not the sole advantage. The general positive effect of domatia on fruit set in this ant–plant could reflect other benefits conferred by domatia-inhabitants, which are not restricted to ants in this myrmecophyte, but comprise a large diversity of other invertebrates. Our results indicate that mutualisms enhance the evolution of myrmecophytism.  相似文献   

10.
Generalist herbivores can face many challenges when choosing their host plant. This can be particularly difficult if their choice and performance are affected by host experience. Greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is an invasive generalist herbivore, which has established in year‐round greenhouses at northern latitudes where it cannot overwinter outdoors. It mainly uses crops such as cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), and ornamentals as host plants. However, every summer the insect escapes greenhouses and is exposed to natural vegetation. We evaluated the performance of T. vaporariorum on diverse vegetation outside greenhouses after prolonged experience of greenhouse crops. First, we surveyed the vegetation near infested greenhouses. Development success of the insect differed among wild hosts. We identified five new hosts among 12 plant species that bore pupae and were thus considered suitable as the insect's host plants. Members of the Urticaceae and Onagraceae were the most preferred and frequently inhabited by all insect life stages. The highest abundance of insects occurred in plots with low plant species richness, independent of plant family in these habitats. We then studied experimentally the impact of 1 year of preconditioning to one of three common greenhouse crops, cucumber, tomato, or poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch), on the performance of the preconditioned adults and their progeny on four wild plants. Adults from tomato and poinsettia preferred the novel host species over the species to which they were preconditioned. The whitefly population preconditioned to cucumber was the most fecund on all offered hosts. We conclude that generalist herbivores can have large variation in performance, despite polyphagy, on novel hosts as shown by the variable abundance of T. vaporariorum pupae among outdoor hosts. Furthermore, performance of whiteflies on natural vegetation was affected by experience on greenhouse crops. Based on our observations, we provide insights and recommendations for pest management.  相似文献   

11.
Interactions between potentially mutualistic partners can vary over geographic areas. Myrmecophytes, which are plants harbouring ants, often do not exhibit sufficient intraspecific variability to permit comparative studies of myrmecophytic traits over space or time. Humboldtia brunonis (Fabaceae), a dominant, endemic myrmecophyte of the Indian Western Ghats, is unique in exhibiting considerable variability in myrmecophytic traits, e.g. domatia presence, as well as domatia occupancy and associated ant diversity throughout its geographic range. Although its caulinary domatia are occupied by at least 16 ant species throughout its distribution, young leaves and floral buds producing extrafloral nectar (EFN) are protected by ants from herbivory only in the southernmost region, where Technomyrmex albipes (Dolichoderinae) is the most abundant ant species. The extent of protection by ants was positively related to local species richness of ants and their occupancy of domatia. On the other hand, the highest abundance of interlopers in the domatia, including non‐protective ants, the arboreal earthworm Perionyx pullus, and other invertebrates, occurred in sites with the least protection from herbivory by ants. Whereas domatia morphometry did not vary between sites, domatia occupied by protective ants and invertebrate interlopers were longer and broader than empty ones at all sites. The lowest percentage of empty domatia was found at the southernmost site. There was a progressive decline in ant species richness from that found at the sites, to that feeding on H. brunonis EFN, to that occupying domatia, possibly indicating constraints in the interactions with the plants at various levels. Our study of this dominant myrmecophyte emphasizes the impact of local factors such as the availability of suitable ant partners, domatia occupancy, and the presence of interlopers on the emergence of a protection mutualism between ants and plants. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 538–551.  相似文献   

12.
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.  相似文献   

13.
The Argentine ant, Linepithema humile (Dolichoderinae), is one of the most widespread invasive ant species in the world. When established in optimal habitat, this species usually excludes most other local ants and can heavily impact other arthropods as well. Although Argentine ants have been present in southern Europe for more than 100 years, they were first noted in Corsica, a French Mediterranean island, in 1957 in only one urban station. In this study, we aimed to map precisely their geographical distribution in Corsica and to quantify their presence by using an infestation index. We recorded changes in the distribution of Argentine ants in Corsica over the past decade. Argentine ants appeared to be well established within their introduced range and spreading along the Corsican coasts principally through Human-mediated jump-dispersal but not homogenously. To cite this article: O. Blight et al., C. R. Biologies 332 (2009).  相似文献   

14.
Tank bromeliads, frequently associated with ants, are considered ‘biodiversity amplifiers’ for both aquatic and terrestrial organisms, and thus have a high ecological value. The focal species of this study, Aechmea aquilega, sheltered the colonies of 12 ant species in a Guianese rural habitat where Odontomachus haematodus, associated with 60% of these plants, was the most frequent. Unexpectedly, the ant species richness was higher in a compared urban habitat with 21 species, but two synanthropic and four invasive ants were noted among them. Consequently, we conducted baiting surveys (on the ground, on trees and on trees bearing A. aquilega) as well as complementary surveys using different sampling modes in urban areas to test if A. aquilega is a surrogate revealing the presence of certain invasive ants. During the baiting survey, we recorded four Neotropical and eight introduced invasive ants out of a total of 69 species. Of these 12 invasive species, five were noted by baiting A. aquilega (including two only noted in this way). A bootstrap simulation permitted us to conclude that A. aquilega significantly concentrates certain species of invasive ants. This was confirmed by complementary surveys, where we did not record further species. We conclude that baiting on trees bearing large epiphytes in human-modified, Neotropical areas is a relevant complement to the early detection of invasive ants.  相似文献   

15.
Invasive exotic ants often have a mutualistic relationship with other insects excreting honeydew, and this is considered to play a key role in their invasion success. We investigated the multispecies association patterns between ants and hemipteran insects in the Yanbaru forests, Okinawa, Japan, an Asian biodiversity hotspot. We especially focused on roadside environments, which are the frontlines of invasion for exotic ants. We found that only a small number of herbaceous and pioneer plants were predominant on the roadsides. Four honeydew producers, Melanaphis formosana, Dysmicoccus sp. A, Heteropsylla cubana, and Sogata hakonensis, living on these roadside plants accounted for 94.9% of the total honeydew-producer aggregations observed. Only a few exotic ants, such as Technomyrmex brunneus and Anoplolepis gracilipes, were observed with these honeydew-producer aggregations, and densities of these ants and honeydew producers were often positively correlated. An ant exclusion experiment showed that exotic ant occurrence improved the survival of some of the hemipteran colonies. Interestingly, the abundance of native ants was not correlated with the abundance of honeydew producers, and the local density of Pheidole noda was negatively correlated with that of M. formosana. These findings, i.e., only a few ants, all exotic, tended to hemipteran honeydew producers despite the existence of many native ants, and the abundances of those exotic ants and those hemipteran insects had positive correlations, provide some insights into the mechanism of biological invasion and provide information for the management of exotic ants.  相似文献   

16.
The addition of floral resources in a crop is the most commonly used conservation biological control strategy. The influence of additional floral resources on the abundance of aphidophagous syrphids has been studied in Mediterranean sweet-pepper greenhouses, in southeast Spain. Sweet alyssum and coriander were the plant species used as flowering plants, distributed in the greenhouse in several monospecific patches. In our first experiment the influence on syrphid pre-imaginal stages (larvae and pupae) was studied and adult stages were studied in a second experiment. A higher number of pre-imaginal syrphids was recorded in two replicated greenhouses where flowers were introduced, compared with two control greenhouses (without additional floral resources). To evaluate the effect on adults, 4 greenhouses were divided into 2 plots in each greenhouse and flowers were introduced in one plot per greenhouse. More hoverfly adults were observed in the plots where flowers had been introduced than in the control. The three most abundant syrphid species found were Eupeodes corollae, Episyrphus balteatus and Sphaerophoria rueppellii. Specimens from these species were dissected, and their pollen content was analysed to assess the food potential of the introduced flowers. The three syrphid species fed on pollen from both the flowering plants, as well as on sweet-pepper pollen. This conservation biological control strategy is an effective method to enhance native syrphid populations in Mediterranean sweet-pepper greenhouses.  相似文献   

17.
One of the most popular single-factor hypotheses that have been proposed to explain the naturalization and spread of introduced species is the enemy release hypothesis (ERH). One ramification of the ERH is that invasive plants sustain less herbivore damage than their native counterparts in the invaded range. However, introduced plants, invasive or not, may experience less herbivore damage than the natives. Therefore, to test the role of natural enemies in the success of invasive plants, studies should include both invasive as well as non-invasive introduced species. In this study, we employed a novel three-way comparison, in which we compared herbivore damage among native, introduced invasive, and introduced non-invasive Eugenia (Myrtaceae) in South Florida. We found that introduced Eugenia, both invasive and non-invasive, sustained less herbivore damage, especially damage by oligophagous and endophagous insects, than native Eugenia. However, the difference in insect damage between introduced invasive and introduced non-invasive Eugenia was not significant. Escape from herbivores may not account for the spread of invasive Eugenia. We would not have been able to draw this conclusion without inclusion of the non-invasive Eugenia species in the study.  相似文献   

18.
Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change.  相似文献   

19.
To document a relation between abundance of arboreal, predatory tiger beetles, their ant prey, and extrafloral nectaries attracting the ants, we gathered data from more than 10 species of native and introduced trees and large, tree‐like perennial plants in Lanao del Sur Province, Mindanao, Philippines. All specimens of tiger beetles (two Tricondyla and two Neocollyris species, all endemic to the country) were noted on five tree species characterized by presence of extrafloral nectaries, including three alien/invasive and two native ones. Invasive Spathodea campanulata and native Hibiscus tiliaceus were the most inhabited ones (respectively, 56% and 19% of beetles). Presence of tiger beetles on these trees most probably depends on high abundance of ants, which are typical prey for arboreal Cicindelidae, while occurrence of ants can result from presence of extrafloral nectaries on different parts of the plants. This suggests a new mutualistic insect–plant interaction between native and invasive species.  相似文献   

20.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号