首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field‐collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective.  相似文献   

2.
Many carabid beetles (Coleoptera: Carabidae) are known to feed on plant seeds, but the level of specialization on this food differs. This is the first study in which seed consumption is assessed for all larval instars and adults of ground beetles. Three species of Amara with syntopic occurrence, Amara aenea (DeGeer), Amara familiaris (Duftschmid) and Amara similata (Gyllenhal), were examined. Larvae of all three instars and adults were fed seeds of Stellaria media (L.) Vill., Capsella bursa‐pastoris (L.) Med. and Taraxacum officinale Wick. ex Wigg. in a laboratory no‐choice experiment. In general, larvae, particularly the first instar, showed greater differences in seed consumption than the adults, although the latter showed similar but less marked pattern. Amara aenea consumed all offered seed diets in all life stages. All three larval instars of granivorous A. familiaris almost exclusively fed on seeds of S. media and the adults also ate significantly more of this than other seeds. Amara similata consumed mostly seeds of C. bursa‐pastoris in the first instar and adult stages, whereas the larvae of the later instars seemed to be unspecialized on particular seed diet. Differences in seed‐specific consumption between larval instars in granivorous carabids are reported for the first time. The results provide further support for the parallel evolution of various degrees of granivory in the genus Amara, which may ultimately facilitate species coexistence. The daily seed consumption by the larvae was comparable or (in case of the third instar) even higher than that by the adults. Hence, we suggest that larvae may be the important consumers of seed in the field and should not be forgotten when seed predation is assessed.  相似文献   

3.
The genus Diabrotica (Coleoptera: Chrysomelidae) includes a great number of pest species, including some of the most important crops pests of the Americas. However, only five parasitoid species have been recorded for it. The parasitoid Celatoria bosqi Blanchard was the first parasitoid described from Diabrotica spp. in South America, where substantial parasitism has been observed. C. bosqi has been collected almost throughout the South American distribution of its main host, Diabrotica speciosa (Germar), in an area that includes temperate and tropical lowlands, and semiarid to humid highlands. Three Diabrotica species were found to host the parasitoid, D. speciosa (Germar), Hystiopsis sp., and Diabrotica viridula (F.), with a total parasitism of 2.60, 5.55, and <0.02%, respectively. Laboratory experiments with field beetles and puparia, reared in the laboratory, indicate that C. bosqi overwinters obligatorily in overwintering adult host beetles, remaining quiescent in its live host below developmental temperatures. Based on the known climatic range of C. bosqi, and its requirement of adult overwintering hosts, a potential distribution in North America is projected.  相似文献   

4.
5.
Spatial variation in the strength of herbivore top-down control represents an important source of variation in plant fitness measures and community structure and function. By measuring seed predator (larvae of a Noctuid moth) and parasitoid impacts on Ruellia nudiflora across a broad spatial scale in Yucatan (Mexico), this study addressed the following: (1) to what extent does seed predator and parasitoid attack intensity associated with R. nudiflora vary spatially? (2) Does parasitoid attack result in a positive indirect effect on the plant, and does the intensity of this effect vary spatially? During the peak of fruit production (late June–early July) of 2005, we collected fruits from 21 R. nudiflora populations and grouped them into four regions: center, east, north and south. For each fruit we recorded: observed seed number, number of seeds eaten, seed predator presence, parasitoid presence and number of seeds ‘saved’ by parasitoids. Seed predators attacked ca 30 percent of fruits/plant on average, while parasitoids were found in 24 percent of seed predator-attacked fruits. Results indicated spatial variation in seed predator and parasitoid attack levels; interestingly, a contrasting spatial gradient of attack intensity was observed: populations/regions with greatest parasitoid attack levels usually had the lowest seed predator attack levels and vice versa, suggesting top-down control of parasitoids on seed predators. We observed a weak overall indirect impact of parasitoids on R. nudiflora (4% seeds ‘saved’ on average), which nonetheless varied strongly across populations (e.g., close to 14% seeds saved at one population). Findings indicate a geographical structuring of interaction strengths across populations, as well as spatial variation in the strength of parasitoid cascading effects on plant reproduction.  相似文献   

6.
The yearly timing of the life cycle of a parasitoid is a key element of its life‐history strategy. I examine here factors influencing the expression of partial bivoltinism in Tetrastichus julis Walker (Hymenoptera: Eulophidae), a specialist parasitoid introduced to North America to attack its univoltine host, the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae). The varying tendency was assessed of individuals of this gregarious larval parasitoid to either emerge as adults in the same summer they mature, or to enter diapause to emerge the following year. Parasitized hosts were obtained by rearing cereal leaf beetles collected as mature larvae from grain fields in northern Utah (western USA) throughout the growing seasons in 2013 and 2014. Cocoons spun by these beetles were held to determine patterns over the spring and summer in the tendency of the parasitoid to forgo larval diapause. A high percentage (nearly 90% in 2013) of parasitoid individuals were found to forgo diapause and emerge in the same summer from earliest maturing hosts. This percentage rapidly declined to 20% or less of individuals forgoing diapause and emerging from cocoons as the summer advanced. The percentage of parasitoid individuals forgoing diapause increased significantly at a given time of season (early or late) as the number of conspecifics with which an individual shared a host larva increased. These results may reflect a trade‐off for individual parasitoids in which greater success in finding – and ovipositing in – host larvae the following spring vs. in summer, is countered by reduced survivorship in diapausing over the winter vs. emerging in the same summer in which the parasitoid matures. Expression of partial bivoltinism of T. julis, as affected strongly by both season and within‐host density, results in high rates of parasitism of cereal leaf beetles both early and late in the season.  相似文献   

7.
Intraguild predation (IGP) occurs when consumers competing for a resource also engage in predatory interactions. A common type of IGP involves aphid predators and parasitoids: since parasitoid offspring develop within aphid hosts, they are particularly vulnerable to predation by aphid predators such as coccinellid beetles. Other intraguild interactions that include non-lethal behavioral effects, such as interference with foraging and avoidance of IGP, may also hamper parasitoid activity and reduce their effectiveness as biological control agents. In this study, we quantified mortality in and behavioral effects on Aphidius colemani Viereck (Hymenoptera: Aphidiidae) by its IG-predator Coccinella undecimpunctata L. (Coleoptera: Coccinellidae), and compared the impact of two release ratios of these natural enemies on aphid populations. Parasitoids did not leave the plant onto which they were first introduced, regardless of the presence of predators, even when alternative prey was offered on predator-free plants nearby. In 2-hour experiments, predator larvae interfered with wasp activity, and the level of aphid parasitism was lower in the presence of predators than in their absence. In these experiments, the parasitoids contributed more to aphid mortality than the predators and aphid suppression was higher when a parasitoid acted alone than in combination with a predator larva. These results were confirmed in a 5-day experiment, but only at one parasitoid:predator release ratio (4:3) not another (2:3). The over-all impact on aphid population growth was non-the-less stronger when both enemies acted together than when only one of them was present. Results indicate that for given release ratios and time scale, the negative lethal and non-lethal effects of the predator on parasitoid performance did not fully cancelled the direct impact of the predator on the aphid population.  相似文献   

8.
The ecology of parasitoids is strongly influenced by their host plant species. Parasitoid fitness can be affected by a variety of plant traits that could promote phenotypic differentiation among populations of parasitoids. Generalist parasitoids are expected to be more affected by plant traits (e.g., plant defensive traits) than specialist parasitoids. Data are presented on phenotypic differences of two braconid parasitoid wasps ovipositing on the same insect host species on two different host plant species. Adult mass, adult longevity, and percent parasitism are compared for the generalist parasitoid Cotesia marginiventris Cresson and the specialist parasitoid Aleiodes nolophanae Ashmead (both Hymenoptera: Braconidae) emerging from green cloverworms, Hypena scabra Fabricius (Lepidoptera: Noctuidae), feeding on two host plant species, alfalfa (Medicago sativa L.) and soybean (Glycine max L. Merr.) (both Fabaceae), at three locations. Specialist wasps that parasitized the green cloverworm on alfalfa had a significantly larger mass than the ones that parasitized the green cloverworm on soybean at the three study sites. Generalist wasps that parasitized green cloverworms on alfalfa had a larger mass than wasps parasitizing green cloverworms on soybean only at one of the study sites (i.e., Prince George's County, MD, USA). Similarly, both specialist and generalist wasps lived longer when parasitizing green cloverworms on alfalfa than when parasitizing them on soybean at only one of the study sites (i.e., Prince George's County). In Prince George's County, percent parasitism on alfalfa by the specialist parasitoid was higher than on soybean for three consecutive years and percent parasitism by the generalist parasitoid was the same on alfalfa and soybean every year. Thus, phenotypic differences among populations associated with different host plant species vary geographically (i.e., parasitoid phenotype associated with different host plant species differ at some sites while it is the same at other sites). The implications of geographic variation for biological control are discussed.  相似文献   

9.
The mite Paramicrodispus scarabidophilus Hajiqanbar and Rahiminejad sp. nov. (Acari: Prostigmata: Microdispidae) is described and illustrated based on phoretic females recovered from Oryctes nasicornis L. (Col.: Scarabaeidae) hosts, which were collected from forests in northern Iran. It is the first record of the genus Paramicrodispus for the mite fauna of Iran. We also found Paramicrodispus crenulatus (Savulkina, 1978) associated with Lucanus ibericus Motschulsky (Col.: Lucanidae), the first report of association between beetles of the family Lucanidae and the mite family Microdispidae. Moreover, for the first time we report an association between beetles of the family Scarabaeidae and Paramicrodispus mites.  相似文献   

10.
 Cytiseae have been reported to be mostly nectar-lacking, yet some taxa secrete nectar from extrastaminal nectaries. We studied the pollination biology of four shrubby species of Cytiseae (Cytisophyllum sessilifolium (L.) Lang, Spartium junceum L., Genista radiata (L.) Scop., Genista cilentina Valsecchi) which differ for ecology, distribution and population size. All species resulted obliged xenogamous, insect visits being necessary for successful pollination. Bumblebees and solitary bees are the principal pollinators, but also many beetles, some hover-flies, and few bugs visit flowers. Pollinator specificity is low, and this may be the reason of the scarce seed set compared to the number of ovules. Pollen is the main reward, but traces of glucose were detected in all species, at the base of vexillum or on the reproductive column. Nectar production is irregular in time, and apparently unpredictable. We suppose that nectar may play a role in attracting pollinators determining their right position for a successful pollination. Received August 12, 2002; accepted November 25, 2002 Published online: June 2, 2003  相似文献   

11.
T. Haye  M. Kenis   《Biological Control》2004,29(3):399-408
The biology and parasitoid complex of the lily leaf beetle (LLB), Lilioceris lilii Scopoli, and two congeneric species were investigated in Europe, as part of a biological control program against the LLB in North America. Eggs, larvae, and adults of L. lilii were collected in several countries in Europe, on both cultivated and wild Lilium spp., and reared in the laboratory and under natural conditions. Parasitoids were obtained and their biologies were studied. Similar investigations were made in Switzerland on two closely related species Lilioceris tibialis (Villa) found on wild Lilium spp., and Lilioceris merdigera (L.) on several other Liliaceae. The three species are strictly univoltine. Adults overwinter and lay eggs on leaves in early spring. The three beetle species have four instars, which were characterized by their head capsule width. Pupation occurs in a cocoon in the soil. Adults emerge in late summer and start feeding before reaching overwintering sites. Egg and larval parasitoids were obtained. Eggs of L. lilii and L. merdigera were parasitized by the mymarid Anaphes sp., a multivoltine species that needs alternate hosts for overwintering. Larvae were heavily attacked by several parasitoids, among which the most abundant were three ichneumonids, Lemophagus pulcher (Szepligeti), L. errabundus (Gravenhorst), and Diaparsis jucunda (Holmgren), and the eulophid Tetrastichus setifer Thomson. All four parasitoid species were found in the three beetles and in most European regions, but strong variations were observed in their relative abundance among hosts and geographic regions. Three of the four main larval parasitoids are strictly univoltine, whereas L. pulcher has a partial second generation. Lemophagus spp. are frequently parasitized by the ichneumonid hyperparasitoid Mesochorus lilioceriphilus Schwenke. Further details of the biology of the parasitoids are described, and their potential as biological control agents is discussed.  相似文献   

12.
Interspecific competition amongst parasitoids is important in shaping the evolution of life‐history strategies in these insects as well as community structure. Competition for hosts may occur between adult female parasitoids (‘extrinsic’ competition) or their progeny (‘intrinsic’ competition). Here, we examined intrinsic competition between two solitary secondary hyperparasitoids, Lysibia nana and Gelis agilis in cocoons of a primary parasitoid, Cotesia glomerata. Each species was allowed to sting hosts previously parasitized by the other at 24 h time intervals over the course of 144 h (6 days). When hosts were attacked simultaneously, neither species was dominant although the species to attack first won most encounters when it had a 24–48 h head start. However, after this time there was dramatic shift in the outcome with G. agilis dominating in all hosts > 72‐h old, regardless of which species had parasitized C. glomerata first. G. agilis larvae, which initially had competed with L. nana for control of C. glomerata resources, began attacking the larvae of L. nana, whereas L. nana rejected hosts with older G. agilis larvae or pupae. Effects of multiparasitism also affected the development time and adult mass of the winning parasitoid. Our results reveal a shift in the trophic status of G. agilis from C. glomerata (in younger hosts) to L. nana (in older hosts), the first time such a phenomenon has been reported in parasitoids.  相似文献   

13.
The effect of seed predation by phytophagous/parasitoid wasps on the reproductive output of aloes is relatively unknown. In this study, conducted at a nature reserve in Pretoria East, South Africa, the range of insects utilising Aloe pretoriensis (Asphodelaceae) fruits and/or seeds and the impact of this usage on its reproductive output were investigated. Using a GLMM, we explored the effects of morphological features (e.g. floral display size) and selected ecological factors (viz. distance between the aloes and conspecifics and other surrounding vegetation) on fruit utilisation and seed predation. A variety of insect visitors to A. pretoriensis (mainly bees and wasps) were identified including a number of seed predators and parasitoids. Evidence of phytophagy in dissected flowers showed increasing evidence of fruit utilisation and seed predation over an 8‐week period. Emergence boxes with infructescences revealed a range of insect phytophages (and their associated parasitoids) in the aloe fruits and seeds: the drosophilid fly, Apenthecia and six species of wasp – five of them associated with ultilisation of aloe fruits/seeds for the first time: Eurytoma aloineae (Chalcididae), Mesopolobus sp., Pteromalus sp., and c.f. Chlorocytus in the Pteromalidae, Bracon sp. (Braconidae) and Pediobius (Eulophidae). Fruit set ranged between 48% and 93%, with an average of 76%, while average percentage utilisation of fruits was 29%, ranging between 7% and 68%. Average seed set was 23 seeds per fruit and average percentage seed predation 21% (range: 0–51%). Fruit utilisation was found to be significantly negatively correlated with distance to the nearest flowering bush (usually Helichrysum kraussii), but display size did not significantly affect fruit utilisation, nor did distance to conspecifics. Aloe pretoriensis thus serves as host to a variety of phytophagous insects and their associated parasitoids, which impacts considerably on its reproductive output with possible implications for the future conservation of this aloe species.  相似文献   

14.
The strategy used most commonly in western North America to protect seedlings of canola (Brassica rapa L. and Brassica napus L.) from attack by adults of the flea beetles Phyllotreta cruciferae (Goeze) and Phyllotreta striolata (Fabricius) (Coleoptera: Chrysomelidae) involves planting seed coated with insecticide for systemic activity. Previous research determined that the two beetle species responded differently to the most commonly used neonicotinoid seed dressings. However, other insecticides that exploit different modes of action have commercial potential for managing infestations of these pests, but no information exists on their efficacies for these flea beetle species. Studies were conducted to compare effects of the neonicotinoid compounds, thiamethoxam and imidacloprid, to spinosyn and fipronil as systemic seed treatments for reducing feeding damage to canola seedlings and increasing mortality of P. cruciferae and P. striolata. Phyllotreta cruciferae experienced greater mortality and caused less feeding damage than P. striolata to seedlings treated with the neonicotinoid compounds. Mortality increased and feeding damage decreased significantly when beetles fed upon seedlings treated with fipronil, indicating its potential usefulness for control of these pests. However, spinosyn seed treatment was relatively ineffective against either beetle species. Higher rates of P. striolata mortality with fipronil than thiamethoxam suggest that fipronil may provide improved flea beetle control over hundreds of thousands of hectares in western North America where flea beetle populations are dominated by P. striolata, and control with thiamethoxam has been suboptimal.  相似文献   

15.
Homopteran vectors (e.g., leafhoppers) of plant pathogens are vessels for reproduction of cell wall‐free bacteria. These vectors also serve as hosts for larval parasitoid dipterans, hymenopterans, and strepsipterans. However, no study has explored the relationship among these wall‐free bacteria and parasitoid larvae within the insect host. We studied the corn stunt spiroplasma (CSS), Spiroplasma kunkelii Whitcomb (Mycoplasmatales: Spiroplasmataceae), a bacterium that originated from secondary symbionts that cause corn stunt disease in maize, Zea mays L., and its reproduction in the haemolymph of the corn leafhopper, Dalbulus maidis (Delong and Wolcott) (Homoptera: Cicadellidae). We also studied the dryinid parasitoid Gonatopus bartletti Olmi (Hymenoptera: Dryinidae), the larva of which feeds in the corn leafhopper haemolymph. Our results showed that when CSS and the wasp coexisted in D. maidis, the development of the parasitoid was not affected by S. kunkelii. Parasitoid development was successfully completed when leafhoppers acquired S. kunkelii before or after parasitism and when CSS had median (10 days) and long (20 days) incubation periods in the leafhopper before parasitization. The presence of S. kunkelii did not affect parasitoid development to the adult stage. However, polymerase chain reaction showed that the presence (survival) of S. kunkelii in the leafhopper was negatively affected by the parasitoid larva. Fewer leafhoppers had CSS before and after parasitization compared with leafhoppers that only acquired the CSS. This negative effect helps to explain the high parasitism rate by G. bartletti in D. maidis and the low presence of S. kunkelii in the corn leafhopper when CSS and the wasp parasitoid overlap throughout their geographic distribution. The parasitoid larva may negatively affect S. kunkelii by (1) producing antibacterial peptides that are toxic to CSS; (2) producing teratocytes that take nutrients from the host for larval development, but these nutrients are required by CSS; (3) affecting, indirectly, CSS through other symbiotic microorganisms; and (4) producing proteins with antibacterial activity that are present in the venom of the wasp parasitoid.  相似文献   

16.
Adult braconid wasps (Bracon sp.) emerged from the droppings of frugivorous birds (Turdus blackbirds and thrushes) collected in a rural environment in southern Europe. It was thus demonstrated for the first time that an insect parasitoid of a fruit‐infesting insect (lepidopteran tortricid) can survive bird ingestion and gut passage inside a seed (privet Ligustrum vulgare), constituting a case of an evolutionary tetrad.  相似文献   

17.
The energetic definition of fitness predicts that natural selection will maximize the residual energy available for growth and reproduction suggesting that energy metabolism might be a target of selection. In this experimental study, we investigated whether female and male yellow mealworm beetles, Tenebrio molitor L. (Coleoptera: Tenebrionidae), differ in their hiding behaviour, individual response latency time, and duration of immobility to treatments mimicking an approaching predation threat. We experimentally tested whether consistently repeatable anti‐predatory responses and resting metabolic rates (RMR) correlated with survival rates of individuals exposed to a nocturnal predator, the brown rat, Rattus norvegicus (Berkenhout) (Rodentia: Muridae). Resting metabolic rate was part of a syndrome involving anti‐predator behaviour. Individuals with lower RMR concealed themselves against predators in substrate more successfully than individuals with higher RMR, and hiding was associated with longer periods of immobility. Ultimately, mortality was higher in the high‐RMR beetles compared to the low‐RMR beetles. Our results provide direct evidence of natural selection against mobility, i.e., for reduced RMR in T. molitor beetles.  相似文献   

18.
The successful development of parasitoids of herbivores depends on the quality of their host, which is often affected by the host plant. Therefore, a parasitoid’s oviposition decisions will directly depend on the host, but also on plant quality. Here, we investigated the direct effects of host species and the indirect effects of the host’s food plant on the oviposition decisions and performance of the gregarious ectoparasitoid Euplectrus platyhypenae Howard (Hymenoptera: Eulophidae). With a series of no‐choice experiments, we determined the oviposition and performance of the parasitoid on: (1) two caterpillar species, fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and velvet armyworm, Spodoptera latifascia Walker, reared on maize (Zea mays L., Poaceae), (2) the same caterpillars reared on maize, bean (Phaseolus vulgaris L., Fabaceae), or squash (Cucurbita pepo L., Cucurbitaceae) leaves, and (3) S. latifascia caterpillars reared on leaves of wild and cultivated lima bean, Phaseolus lunatus L. All these insects and plants originate from Mesoamerica where they have coexisted for thousands of years in the traditional agricultural system known as Milpa in which maize, beans, and squash are planted together. We found that the preferred and best combination of host and host plant for parasitoid performance was S. frugiperda on maize. Parasitoids laid larger clutches, had higher survival, and more females and larger adults emerged from S. frugiperda reared on maize. However, when both caterpillar species were reared on squash, S. latifascia was the better host. Contrary to the literature, S. frugiperda was not able to develop on bean plants. Results from the lima bean experiment showed that parasitoid performance was best when S. latifascia was reared on leaves of cultivated compared to wild lima bean. These findings are discussed in the context of mixed cropping in which the ability of generalist parasitoids to switch among hosts and host plant species could be advantageous for pest management.  相似文献   

19.
Anagrus atomus L. is an important egg parasitoid of the green leafhopper Empoasca decipiens Paoli. In this study the ability of the parasitoid to locate and parasitize its host was investigated on four host plants, i.e., broad beans (Vicia faba L.), sweet pepper (Capsicum annuum L.), cucumber (Cucumis sativus L.), and French beans (Phaseolus vulgaris L.). For each plant species, the behavior of the parasitoid was observed on E. decipiens infested and noninfested plants. Searching and oviposition behavior were characterized by drumming, probing, and resting. Parasitoids spent significantly less time on non-infested than infested plants, 274.5 and 875.7 s, respectively, and no probing behavior was observed on non-infested plants. Frequency of resting behavior was significantly greater on non-infested than on infested plants. Total foraging time was significantly longer on infested than on non-infested plants, indicating that A. atomus females can efficiently discriminate between leaves with and without infestation. Parasitism of A. atomus was influenced by parasitoid density, with the highest parasitism rate (64.0%) obtained at a density of 10 A. atomus females/0.1356 m2 but the number of parasitized eggs per female and the searching efficiency decreased with increasing parasitoid density.  相似文献   

20.
The parasitoid Gronotoma adachiae is reported from Vietnam for the first time. The vegetable leaf miner Liriomyza sativae (Diptera: Agromyzidae) is a new host record. The G. adachiae specimens collected in Yunnan Province are the second record of this parasitoid from China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号