首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal‐mating clade are smaller than those in the adult‐mating clade. Interestingly, we find that high‐altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high‐altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.  相似文献   

2.
3.
Although sexual size dimorphism (SSD) is common among mammals, there is no clear explanation for its maintenance in nature. Bats are one of the few groups of mammals where reverse SSD appears. In this group, the size of individuals may have very important ecological consequences related with flight. In this study, we examine sexual dimorphism in the wing measurements of 195 adult individuals (141 males and 54 females) of the greater mouse‐eared bat Myotis myotis in the south‐east of the Iberian Peninsula. We also investigated size differences between paired and single males in a swarming roost. The results indicate that there are significant differences in the wing measurements between sexes, females being bigger than males in this respect. While no significant differences in the wing measurements of paired and single males were observed, significant differences were found in their relative weight and fitness, single males being significantly heavier and having a better physical condition. We discuss the implications of SSD for the female of M. myotis in terms of reproductive advantages, trophic niche segregation and a greater ability to move, which may favour gene flow between populations.  相似文献   

4.
Pattern of skull development and sexual dimorphism was studied in Cebus apella and Alouatta caraya using univariate, bivariate, and multivariate statistics. In both species, sexual dimorphism develops because the common growth trajectory in males extends and because of differences in growth rates between sexes. The expectation that the ontogenetic bases of adult dimorphism vary interspecifically is well substantiated by this study. A. caraya exhibits transitional dimorphism in its subadult stage, although the condylobasal length, zygomatic breadth, and rostrum length are strongly dimorphic in the final adult stage, being greater in males. Most cranial measurements in C. apella exhibit significant dimorphism in the adult stage, being strongly influenced by a faster rate of growth in males. Sexual dimorphism is also evidenced through sex differences in growth rates in several cranial measurements. These results also indicate that different ontogenetic mechanisms are acting in C. apella and A. caraya and reveal differences in the way through which neotropical primates attain adult sexual dimorphism. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
The oriental mole cricket Gryllotalpa orientalis exhibits variation in wing dimorphism. In an Okinawa population, no short‐winged individuals were observed, and wing dimorphism has not been detected. Flight behavior of G. orientalis was observed from April to October in Okinawa. In contrast, a Hyogo population exhibited seasonal wing dimorphism and long‐winged individuals appear from June to September. The flight period of the long‐winged morph coincided with this period. Short‐winged individuals appeared from September to the following June and they never fly. Both populations showed univoltine life cycles. Considering the possible flight period, wing pattern and life cycle of mole crickets in these two areas, it is presumed that flightlessness is expected to arise when adults can not experience suitable temperatures for flight activity.  相似文献   

6.
The effects of a series of ecological and size factors on the degree of sexual dimorphism in body weight and canine size were studied among subsets of 70 primate species. Variation in body-weight dimorphism can be almost entirely attributed to body weight (83% of variance R2 of weight dimorphism). Much smaller amounts of the variation can be attributed to mating system (R2 =6.8%,polygynous species being more dimorphic than monogamous ones) and diet (R2 = 2.5%,frugivorous species being more dimorphic than folivorous ones). Habitat (arboreal vs. terrestrial) and activity rhythm (nocturnal vs. diurnal) have only an indirect effect on weight dimorphism. Variation in canine-size dimorphism can be explained in terms of canine size (R2 =49%),activity rhythm (R2 = 20%,diurnal species being more dimorphic than nocturnal ones), and mating system (R2 = 10%).Habitat and diet do not play a significant role in canine-size dimorphism. The unexpectedly high contribution of size to sexual dimorphism coupled with the observation of increased sexual dimorphism with increased size leads us to formulate a new selection model for the evolution of sexual dimorphism. We suggest that if there is selection for size increase, whatever its cause, directional selection in both males and females will lead to an increase in sexual dimorphism based on differences in genetic variance between the sexes. Sexual selection, resource division between the sexes, or lopsided reproductive selection need not play a role in such a model.  相似文献   

7.
  1. Mobility in flying animals can be assessed by variations in morpho–ecological traits such as body, thorax and wing sizes, wing shape and the proportion between body mass and wing area. Habitat loss and fragmentation can promote phenotypic plasticity and microevolutionary divergencies in natural populations. In this context, sexual differences in physiology and behaviour can impose different selection pressure on morphological aspects related to flight.
  2. We evaluated the relative impact of forest patch area and habitat amount in shaping flight-related morpho–ecological traits of the tropical butterfly Hamadryas februa. We find a marked sexual dimorphism in the species, with females being larger, having larger thorax, higher wing loadings and larger wing total area than males. These trait values indicate females as the more dispersive sex. We show that habitat amount modulates body mass allocations in both sexes, leading to an increase in thorax mass with decreasing habitat amount. The effect of habitat amount was more pronounced in females, which increased total mass and wing loading while decreasing thorax allocation with decreasing habitat amount. This outcome suggests that females increase abdominal mass in response to a reduction in habitat amount. The focal forest patch increasing area was linked to increases in hindwing lengths in both females and males.
  3. We advocate that both landscape metrics (i.e., habitat amount and patch area) should be considered in studies evaluating landscapes' impacts on insect mobility. We discuss results in terms of the species' sexual differences in flight behaviour and the relative importance of both landscape metrics.
  相似文献   

8.
In this paper, we examine allometric and sexual-selection explanations for interspecific differences in the amount of sexual dimorphism among 60 primate species. Based on evidence provided by statistical analyses, we reject Leutenegger and Cheverud’s [(1982). Int. J. Primatol.3:387-402] claim that body size alone is the major factor in the evolution of sexual dimorphism. The alternative proposed here is that sexual selection due to differences in the reproductive potential of males and females is the primary cause of sexual dimorphism. In addition, we propose that the overall size of a species determines whether the dimorphism will be expressed as size dimorphism,rather than in some other form.  相似文献   

9.
Wing morphological variations are described here for the lycaenid butterfly Tongeia fischeri. A landmark‐based geometric morphometric approach based on wing venation of 197 male and 187 female butterflies collected in Japan was used to quantify wing size and shape variations between sexes and among populations. Sexual dimorphism in wing size and shape was detected. Females had significantly larger wings than males, while males showed a relatively elongated forewing with a longer apex and narrower wing tornus in comparison to females. Intraspecific variations in wing morphology among populations were revealed for the wing shape, but not wing size. Distinct wing shape differences were found in the vein intersections area around the distal part of the discal cell where median veins originated in the forewing and around the origin of the CU1 vein in the hindwing. In addition, phenotypic relationships inferred from wing shape variations grouped T. fischeri populations into three groups, reflecting the subspecies classification of the species. The spatial variability and phenotypic relationships between conspecific populations of T. fischeri detected here are generally in agreement with the previous molecular study based on mitochondrial and nuclear sequences, suggesting the presence of a phylogenetic signal in the wing shape of T. fischeri, and thus having taxonomic implications.  相似文献   

10.
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force.  相似文献   

11.
12.
Like the majority of Columbiformes, the Laughing Dove Spilopelia senegalensis is sexually monomorphic in plumage, but seems to be slightly dimorphic in size. However, due to the lack of studies little is known about the sexual size dimorphism in this species. In this work, we used morphometric data on a sample of 61 Laughing Doves from southern Tunisia, and sexed using a DNA-based method, to assess size differences between males and females and to determine a discriminant function useful for sex identification. The results showed that wing length was the most dimorphic trait, which could be due to the effects of sexual selection. The best function for the discrimination between sexes included wing length and head length, which is comparable with findings on other dove species. This discriminant function accurately classified 89% of birds, providing a rapid and accurate tool for sex identification in the studied population. Further data from different populations are needed for firmer conclusions about the extent of sexual size dimorphism and the reliability of the morphometric sexing approach in this dove species.  相似文献   

13.
Many organisms show distinct morphological types. We argue that the evolution of these alternate morphologies depends upon both fitness differences between morphs within each sex and the genetic correlation between sexes. In this paper, we examine the evolution of alternate morphologies using wing dimorphism in insects as a model system. Many insect species are wing dimorphic, one morph having wings and being capable of flight, the other lacking functional wings. While there is a well established trade-off in females between macroptery and reproduction, there are few data on the possible costs in males. We examine trade-offs between macroptery and life-history traits in male sand crickets, Gryllus firmus, and estimate the genetic correlation of wing dimorphism between the sexes. Macropterous males develop faster than micropterous males and are either larger or the same size depending upon rearing conditions. There is no difference in absolute or relative testis size at eclosion or 7 d thereafter. Finally, there is no difference between macropterous and micropterous males in relative success at siring offspring. Thus, with respect to the above traits, there are no costs associated with being winged in male G. firmus. It is possible that there may be a trade-off between calling rate and macroptery. A comparison of the relative frequency of macroptery between males and female across different orders of insects supports this hypothesis. The genetic correlation of wing dimorphism between the sexes is high (r8 = 0.86), and hence the frequency of macroptery in males may be strongly influenced by selection acting on females.  相似文献   

14.
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

15.
16.
Winter geometrid moths exhibit sexual dimorphism in wing length and female‐specific flightlessness. Female‐specific flightlessness in insects is an interesting phenomenon in terms of sexual dimorphism and reproductive biology. In the winter geometrid moth, Protalcis concinnata (Wileman), adult females have short wings and adult males have fully developed wings. Although the developmental process for wing reduction in Lepidoptera is well studied, little is known about the morphology and the developmental pattern of short‐winged flightless morphs in Lepidoptera. To clarify the precise mechanisms and developmental processes that produce short‐winged morphs, we performed morphological and histological investigations of adult and pupal wing development in the winter geometrid moth P. concinnata. Our findings showed that (a) wing development in both sexes is similar until larval‐pupal metamorphosis, (b) the shape of the sexually dimorphic wings is determined by the position of the bordering lacuna (BL), (c) the BL is positioned farther inward in females than in males, and (d) after the short pupal diapause period, the female pupal wing epithelium degenerates to approximately two‐thirds its original size due to cell death. We propose that this developmental pattern is a previously unrecognized process among flightless Lepidoptera.  相似文献   

17.
Wing dimorphism is a fascinating feature of the ability of insects to adapt to environments. The brown planthopper (BPH) Nilaparvata lugens, a serious pest of rice, can switch between the long- and short-winged morphs. It has been known that environmental factors can affect the wing morph of BPH. However, it is still unclear whether the effect of environment is dependent on BPH genetic backgrounds or not. In the present study, we established the pure-bred lineages of short- and long-winged BPHs via multigenerational selection, and we found that survival and fecundity were similar between these 2 lineages. Wing morphs of the pure-bred lineages were almost fully dependent on genetics, but independent of the environmental factors, nymphal density and rice plant stage, 2 key factors affecting BPH wing morphs. In the unselected BPH population, short- and long-winged morphs were produced depending on those 2 environmental factors, indicating the contribution of environment to wing morph. In the wing-selected lineages, 4 developmental regulated genes of wing, NlInR1, NlInR2, NlAkt, and NlFoxo were expressed stably in the short-winged adults, but almost silenced in the long-winged adults. However, all these genes were expressed normally with a similar level in both the short- and long-winged adults in an unselected population except NlFoxo. The pure-bred lineages of long- and short-winged morphs exhibited different expression patterns of wing development-regulated genes, suggesting the genetic determination of wing morphs. Effects of environmental factors on wing morphs occurred only in the genetic mix population.  相似文献   

18.
Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex‐linked genetic variance (h2z). Of 17 traits examined, eight showed a nonzero h2Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex‐linked genetic variance. Sexually selected traits did not show higher h2Z than morphological traits and there was only a weak positive relationship between h2Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism.  相似文献   

19.
Achromatic patches are a common element of plumage patterns in many bird species and there is growing body of evidence that in many avian taxa they can play a signaling role in mate choice. Although the blue tit Cyanistes caeruleus is a well-established model species in the studies on coloration, its white wing patch has never been examined in the context of sex-specific trait expression. In this exploratory study, we examined sexual size dimorphism and dichromatism of greater covert’s dots creating white wing patch and analyzed its correlations with current body condition and crown coloration—a trait with established role in sexual selection. Further, we qualitatively analyzed microstructural barb morphology underlying covert’s coloration. We found significant sexual dimorphism in the dot size independent of covert size and sexual dichromatism in both white dot and blue outer covert’s vane spectral characteristics. Internal structure of covert barbs within the white dot was similar to the one found in barbs from the blue part that is, with a medullary area consisting of dead keratinocytes containing channel-type ß-keratin spongy nanostructure and centrally located air cavities. However, it lacked melanosomes which was the main observed difference. Importantly, UV chroma of covert’s blue vane was positively correlated with crown UV chroma and current condition (the latter only in males), which should be a premise for further research on the signal function of the wing stripe.  相似文献   

20.
A review of data on the background of wing dimorphism in carabid beetles (Coleoptera: Carabidae) and especially of the closely relatedCalathus cinctus andC. melanocephalus is given. In bothCalathus species wing dimorphism is inherited in a simple Mendelian fashion with the brachypterous condition dominant, but inC. melanocephalus the expression of the long winged genotype is under environmental control as well. The development of long winged phenotypes in the latter species is favoured by relatively favourable environmental conditions, such as high temperatures and a high food-supply. The higher fecundity of the larger and heavier long winged females of both species may compensate for losses of long winged phenotypes by flight activities. The evolutionary significance of both types of inheritance is discussed in relation to dispersal. The ‘fixed type’ as found inC. cinctus is considered an opportunistic short term ‘between sites strategy’, whereas the ‘dynamic type’ ofC. melanocephalus represents a flexible long term ‘within sites strategy’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号