首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The extracellular signal-regulated kinase (ERK) pathway is activated by hypertrophic stimuli in cardiomyocytes. However, whether ERK plays an essential role or is implicated in all major components of cardiac hypertrophy remains controversial. Using a selective MEK inhibitor, U0126, and a selective Raf inhibitor, SB-386023, to block the ERK signaling pathway at two different levels and adenovirus-mediated transfection of dominant-negative Raf, we studied the role of ERK signaling in response of cultured rat cardiomyocytes to hypertrophic agonists, endothelin-1 (ET-1), and phenylephrine (PE). U0126 and SB-386023 blocked ET-1 and PE-induced ERK but not p38 and JNK activation in cardiomyocytes. Both compounds inhibited ET-1 and PE-induced protein synthesis and increased cell size, sarcomeric reorganization, and expression of beta-myosin heavy chain in myocytes with IC(50) values of 1-2 microm. Furthermore, both inhibitors significantly reduced ET-1- and PE-induced expression of atrial natriuretic factor. In cardiomyocytes transfected with a dominant-negative Raf, ET-1- and PE-induced increase in cell size, sarcomeric reorganization, and atrial natriuretic factor production were remarkably attenuated compared with the cells infected with an adenovirus-expressing green fluorescence protein. Taken together, our data strongly support the notion that the ERK signal pathway plays an essential role in ET-1- and PE-induced cardiomyocyte hypertrophy.  相似文献   

6.
Kwak DH  Jin JW  Ryu JS  Ko K  Lee SD  Lee JW  Kim JS  Jung KY  Ko K  Ma JY  Hwang KA  Chang KT  Choo YK 《BMB reports》2011,44(12):799-804
Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.  相似文献   

7.
Cardiomyocytes derived from embryonic stem cells (ES-CMs) and induced pluripotent stem cells (iPS-CMs) are useful for toxicity and pharmacology screening. In the present study, we found that cardiomyocyte-rich beating cell clusters (CCs) emerged from murine embryonic stem cell (mESC)-derived beating EBs and from human-induced pluripotent stem cell (hiPSC)-derived beating EBs dissociated by gentle pipetting with a thin glass pipette. The percentage of cardiac troponin T (cTnT)-positive cells in the beating CCs obtained from mESC-derived and hiPSC-derived beating EBs was higher (81.5% and 91.6%, respectively) than in beating-undissociated EBs (13.7% and 67.1%, respectively). For mESCs, the yield of cTnT-positive cells from beating CCs was estimated to be 1.6 times higher than that of beating EBs. The bromodeoxyuridine labeling index of mouse ES-CMs and human iPS-CMs in beating CCs was 1.5- and 3.2-fold, respectively, greater than those in beating EBs. To investigate the utility of the cells in toxicity assessment, we showed that doxorubicin, a cardiotoxic drug, induced myofilament disruption in cardiomyocytes isolated by this method. This simple method enables preparation of mouse ES-CMs and human iPS-CMs with better proliferative activity than beating EBs not dissociated by pipetting, and the cardiomyocytes are useful for drug-induced myocardial toxicity testing.  相似文献   

8.
9.
The importance of interleukin 6 (IL-6)-related cytokines in cardiac homeostasis has been studied extensively; however, little is known about their biological significance in cardiac stem cells. Here we describe that leukemia inhibitory factor (LIF), a member of IL-6-related cytokines, activated STAT3 and ERK1/2 in cardiac Sca-1+ stem cells. LIF stimulation resulted in the induction of endothelial cell-specific genes, including VE-cadherin, Flk-1, and CD31, whereas neither smooth muscle nor cardiac muscle marker genes such as GATA4, GATA6, Nkx-2.5, and calponin were up-regulated. Immunocytochemical examination showed that about 25% of total cells were positively stained with anti-CD31 antibody 14 days after LIF stimulation. Immunofluorescent microscopic analyses identified the Sca-1+ cells that were also positively stained with anti-von Willebrand factor antibody, indicating the differentiating process of Sca-1+ cells into the endothelial cells. IL-6, which did not activate STAT3 and ERK1/2, failed to induce the differentiation of cardiac stem cells into the endothelial cells. In cardiac stem cells, the transduction with dominant negative STAT3 abrogated the LIF-induced endothelial differentiation. And the inhibition of ERK1/2 with the MEK1/2 inhibitor U0126 also prevented the differentiation of Sca-1+ cells into endothelial cells. Thus, both STAT3 and ERK1/2 are required for LIF-mediated endothelial differentiation in cardiac stem cells. Collectively, it is proposed that LIF regulates the commitment of cardiac stem cells into the endothelial cell lineage, contributing to neovascularization in the process of tissue remodeling and/or regeneration.  相似文献   

10.
11.
Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors.  相似文献   

12.
13.
The treatment of ES cells with trichostatin A (TSA), an HDAC inhibitor, induces the acetylation of GATA4 as well as histones, and facilitates their differentiation into cardiomyocytes. Recently, we demonstrated that cyclin‐dependent kinase 9 (Cdk9), a core component of positive elongation factor‐b, is a novel GATA4‐binding partner. The present study examined whether Cdk9 forms a complex with GATA4 in mouse ES cells and is involved in their differentiation into cardiomyocytes. Mouse ES cells and Nkx2.5/GFP ES cells, in which green fluorescent protein (GFP) is expressed under the control of the cardiac‐specific Nkx2.5 promoter, were induced to differentiate on feeder‐free gelatin‐coated plates. Immunoprecipitation/Western blotting in nuclear extracts from mouse ES cells demonstrated that Cdk9 as well as cyclin T1 interact with GATA4 during myocardial differentiation. TSA treatment increased Nkx2.5/GFP‐positive cells and endogenous mRNA levels of Nkx2.5 and atrial natriuretic factor. To determine the role of Cdk9 in myocardial cell differentiation, we examined the effects of a dominant‐negative form of Cdk9 (DN‐Cdk9), which loses its kinase activity, and a Cdk9 kinase inhibitor, 5,6‐dichloro‐1‐β‐ribofuranosyl‐benzimidazole (DRB) on TSA‐induced myocardial cell differentiation. The introduction of the DN‐Cdk9 inhibited TSA‐induced increase in GFP expression in Nkx2.5/GFP ES cells. The administration of DRB into ES cells significantly inhibited TSA‐induced increase of endogenous Nkx2.5 mRNA levels in ES cells as well as GFP expression in Nkx2.5/GFP ES cells. These findings demonstrate that Cdk9 is involved in the differentiation of mouse ES cells into cardiomyocytes by interacting with GATA4. J. Cell. Physiol. 226: 248–254, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Improving cardiac differentiation of human pluripotent stem cells is mandatory to provide functional heart muscle cells for novel therapies. Here, we have investigated the enhancing effect of the small molecule SB203580, a p38 MAPK inhibitor, on cardiomyogenesis in hESC by monitoring the phosphorylation patterns of the major MAPK pathway components p38, JNK and ERK by western immunoblotting. A remarkable drop in phosphorylation levels of all three MAPK pathways was induced after overnight embryoid body (EB) formation. Upon further differentiation, phosphorylation dynamics in EBs were specifically altered by distinct inhibitor concentrations. At 5μM of SB203580, cardiomyogenesis was most efficient and associated with the expected p38 pathway inhibition. In parallel, JNK activation was observed suggesting a regulatory interlink between these pathways in hESC ultimately supporting cardiac differentiation. In contrast, moderately elevated SB203580 concentrations (15-30μM) resulted in complete disruption of cardiomyogenesis which was associated with prominent inhibition of ERK and further elevated JNK activity. We propose that a tightly-balanced pattern in MAPK phosphorylation is important for early mesoderm and subsequent cardiomyocyte formation. Our data provide novel insights into molecular consequences of small molecule supplementation in hESC differentiation, emphasizing the role of MAPK-signaling.  相似文献   

15.
The embryonal carcinoma-derived cell line, ATDC5, differentiates into chondrocytes in response to insulin or insulin-like growth factor-I stimulation. In this study, we investigated the roles of mitogen-activated protein (MAP) kinases in insulin-induced chondrogenic differentiation of ATDC5 cells. Insulin-induced accumulation of glycosaminoglycan and expression of chondrogenic differentiation markers, type II collagen, type X collagen, and aggrecan mRNA were inhibited by the MEK1/2 inhibitor (U0126) and the p38 MAP kinase inhibitor (SB203580). Conversely, the JNK inhibitor (SP600125) enhanced the synthesis of glycosaminoglycan and expression of chondrogenic differentiation markers. Insulin-induced phosphorylation of ERK1/2 and JNK but not that of p38 MAP kinase. We have previously clarified that the induction of the cyclin-dependent kinase inhibitor, p21(Cip-1/SDI-1/WAF-1), is essential for chondrogenic differentiation of ATDC5 cells. To assess the relationship between the induction of p21 and MAP kinase activity, we investigated the effect of these inhibitors on insulin-induced p21 expression in ATDC5 cells. Insulin-induced accumulation of p21 mRNA and protein was inhibited by the addition of U0126 and SB203580. In contrast, SP600125 enhanced it. Inhibitory effects of U0126 or stimulatory effects of SP600125 on insulin-induced chondrogenic differentiation were observed when these inhibitors exist in the early phase of differentiation, suggesting that MEK/ERK and JNK act on early phase differentiation. SB202580, however, is necessary not only for early phase but also for late phase differentiation, indicating that p38 MAP kinase stimulates differentiation by acting during the entire period of cultivation. These results for the first time demonstrate that up-regulation of p21 expression by ERK1/2 and p38 MAP kinase is required for chondrogenesis, and that JNK acts as a suppressor of chondrogenesis by down-regulating p21 expression.  相似文献   

16.
17.
In this study we investigated cardiomyocyte differentiation of rat bone marrow-mesenchymal stem cells (BM-MSCs) by treating the stem cells with conditions mimicking that of myocardial infarction. The extract from infarcted rat myocardium contained the biochemical factors arising after infarction. The cardiac contraction and relaxation were simulated by applying 4% strain at 1 Hz to the stem cells. We found that the extract from infarcted myocardium or 4% strain each alone could induce cardiomyocyte differentiation of BM-MSCs, as shown by expression of cardiomyocyte-specific genes including α-actin, connexin 43, Nkx2.5, MEF2c, GATA4, α-MHC, and Troponin I. Furthermore, a combination of the extract and 4% strain had stronger effects on cardiomyocyte differentiation than what either treatment alone had. Our results suggest that this in vitro model system simulates the local cardiac environment cues after infarction and may be useful in identifying the biochemical and physical factors involved in cardiomyocyte differentiation.  相似文献   

18.
19.
20.
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号