共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Margarida TerrnPuig Isabel HuberRuano Joan SabadellBasallote Miriam Ejarque Catalina NúezRoa Elsa MaymMasip Rosa Jorba Carolina Serena Joan Vendrell Sonia FernndezVeledo 《Aging cell》2022,21(8)
Dysfunctional adipocyte precursors have emerged as key determinants for obesity‐ and aging‐related inflammation, but the mechanistic basis remains poorly understood. Here, we explored the dysfunctional adipose tissue of elderly and obese individuals focusing on the metabolic and inflammatory state of human adipose‐derived mesenchymal stromal cells (hASCs), and on sirtuins, which link metabolism and inflammation. Both obesity and aging impaired the differentiation potential of hASCs but had a different impact on their proliferative capacity. hASCs from elderly individuals (≥65 years) showed an upregulation of glycolysis‐related genes, which was accompanied by increased lactate secretion and glycogen storage, a phenotype that was exaggerated by obesity. Multiplex protein profiling revealed that the metabolic switch to glycogenesis was associated with a pro‐inflammatory secretome concomitant with a decrease in the protein expression of SIRT1 and SIRT6. siRNA‐mediated knockdown of SIRT1 and SIRT6 in hASCs from lean adults increased the expression of pro‐inflammatory and glycolysis‐related markers, and enforced glycogen deposition by overexpression of protein targeting to glycogen (PTG) led to a downregulation of SIRT1/6 protein levels, mimicking the inflammatory state of hASCs from elderly subjects. Overall, our data point to a glycogen‐SIRT1/6 signaling axis as a driver of age‐related inflammation in adipocyte precursors. 相似文献
6.
7.
Nasal epithelium inflammation plays an important role in transmitting and amplifying damage signals for the lower airway. However, the molecular basis of nasal epithelium inflammation damage has not been fully addressed. Mst1 is reported to modulate inflammation via multiple effects. Thus, the aim of our study is to understand the pathological mechanism underlying Mst1-related nasal epithelium inflammation in vitro. Our result indicated that Mst1 expression was rapidly increased in response to tumor necrosis factor-α (TNF-α) treatment in vitro and this effect was a dose-dependent manner. Interestingly, knockdown of Mst1 via transfecting small interfering RNA markedly reversed cell viability in the presence of TNF-α. Further, we found that Mst1 deficiency reduced cellular oxidative stress and attenuated mitochondrial dysfunction, as evidenced by reversed mitochondrial complex-I activity, decreased mitochondrial permeability transition pore opening rate, and stabilized mitochondrial membrane potential. Besides, we found that Nrf2 expression was increased after deletion of Mst1 whereas silencing of Nrf2 abolished the protective effects of Mst1 deletion on nasal epithelium survival and mitochondrial homeostasis. Moreover, Nrf2 overexpression also protected nasal epithelium against TNF-α-induced inflammation damage. Altogether, our data confirm that the Mst1 activation and Nrf2 downregulation seem to be the potential mechanisms responsible for the inflammation-mediated injury in nasal epithelium via mediating mitochondrial damage and cell oxidative stress. 相似文献
8.
9.
10.
11.
12.
PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study, PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes. 相似文献
13.
Achintya Patel Tradd Dobbins Xiaoyuan Kong Rehka Patel Gay Carter Linette Harding Robert P. Sparks Niketa A. Patel Denise R. Cooper 《Journal of cellular and molecular medicine》2022,26(15):4183
Excessive dietary intake of fat results in its storage in white adipose tissue (WAT). Energy expenditure through lipid oxidation occurs in brown adipose tissue (BAT). Certain WAT depots can undergo a change termed beiging where markers that BAT express are induced. Little is known about signalling pathways inducing beiging. Here, inhibition of a signalling pathway regulating alternative pre‐mRNA splicing is involved in adipocyte beiging. Clk1/2/4 kinases regulate splicing by phosphorylating factors that process pre‐mRNA. Clk1 inhibition by TG003 results in beige‐like adipocytes highly expressing PGC1α and UCP1. SiRNA for Clk1, 2 and 4, demonstrated that Clk1 depletion increased UCP1 and PGC1α expression, whereas Clk2/4 siRNA did not. TG003‐treated adipocytes contained fewer lipid droplets, are smaller, and contain more mitochondria, resulting in proton leak increases. Additionally, inhibition of PKCβII activity, a splice variant regulated by Clk1, increased beiging. PGC1α is a substrate for both Clk1 and PKCβII kinases, and we surmised that inhibition of PGC1α phosphorylation resulted in beiging of adipocytes. We show that TG003 binds Clk1 more than Clk2/4 through direct binding, and PGC1α binds to Clk1 at a site close to TG003. Furthermore, we show that TG003 is highly specific for Clk1 across hundreds of kinases in our activity screen. Hence, Clk1 inhibition becomes a target for induction of beige adipocytes. 相似文献
14.
CB1 (also known as CNR1), a main receptor for cannabinoids acting at PPARs, can enhance fat deposition. Carnitine palmitoyltransferase‐1 (CPT1), an enzyme responsible for the transport of long‐chain fatty acids for β‐oxidation, is closely related to fat deposition. Whether CB1 can regulate intramuscular adipocytes lipid accumulation through regulation of CPT1 is unclear. Based on the investigation of tissue‐ and breed‐specific CPT1A and CPT1B mRNA expression levels in Jinhua and Landrace pigs, we studied the effects of CB1 on lipid accumulation and CPT1B expression by treating porcine intramuscular adipocytes with CB1 antagonist Δ9‐THC and antagonist SR141716. Results showed that muscle CPT1 mRNA was expressed at higher levels in the longissimus dorsi and subcutaneous fat. Liver CPT1A mRNA expression levels were higher in the pancreas, duodenum and liver. Compared with Landrace pigs, CPT1A and CPT1B in the longissimus dorsi of Jinhua pigs were significantly higher and positively correlated with intramuscular fat content. However, for subcutaneous fat, CPT1 levels were significantly lower and negatively correlated with body fat percentage. Δ9‐THC significantly increased CB1 mRNA levels and lipid accumulation but decreased CPT1A and CPT1B mRNA levels. Conversely, SR141716 reduced CB1 mRNA levels but increased CPT1A and CPT1B mRNA levels, resulting in decreased lipid accumulation. The CPT1 antagonist etomoxir did not affect CB1 expression, suggesting that CB1 is likely upstream of CPT1A and CPT1B. Meanwhile, PPARA expression was greatly decreased when CPT1A and CPT1B were inhibited and enhanced when CPT1A and CPT1B were activated. Taken together, these data indicate that CB1 can affect intramuscular fat deposition by regulating both CPT1A and CPT1B mRNA expression, with the PPARA signal pathway likely playing a major role in this process. 相似文献
15.
16.
Tanushree Bose Juan Carlos Lopez Alvarenga M. Elizabeth Tejero V. Saroja Voruganti J. Michael Proffitt Jeanne H. Freeland-Graves Shelley A. Cole & Anthony G. Comuzzie 《Journal of medical primatology》2009,38(6):418-424
Background Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine known to induce adipocyte dedifferentiation and insulin resistance. Inflammation, insulin resistance, and obesity have been implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Methods Fasting plasma from 43 baboons were assayed for MCP-1, insulin, glucose, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Adipocyte number and volume were measured via biopsies of omental adipose tissue. The homeostatic model assessment method (HOMA) was used to estimate systemic insulin resistance.
Results Sex and age adjusted correlations were significant for MCP-1 with adipocyte number (r = −0.42; P = 0.01), adipocyte volume (r = 0.38; P = 0.02), HOMA (r = 0.45; P = 0.004), ALT (r = 0.46; P = 0.03) and AST (r = 0.45; P = 0.03).
Conclusions These results suggest that MCP-1 is related with adipocyte dedifferentiation and systemic insulin resistance, thereby potentially contributing to the development of NAFLD. 相似文献
Methods Fasting plasma from 43 baboons were assayed for MCP-1, insulin, glucose, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Adipocyte number and volume were measured via biopsies of omental adipose tissue. The homeostatic model assessment method (HOMA) was used to estimate systemic insulin resistance.
Results Sex and age adjusted correlations were significant for MCP-1 with adipocyte number (r = −0.42; P = 0.01), adipocyte volume (r = 0.38; P = 0.02), HOMA (r = 0.45; P = 0.004), ALT (r = 0.46; P = 0.03) and AST (r = 0.45; P = 0.03).
Conclusions These results suggest that MCP-1 is related with adipocyte dedifferentiation and systemic insulin resistance, thereby potentially contributing to the development of NAFLD. 相似文献
17.
Avivar A García-Macias MC Ascaso E Herrera G O'Connor JE de Mora JF 《FEBS letters》2006,580(22):5222-5226
Here we report a new model of pre-clinical breast cancer which has been generated by overexpressing the steroid receptor coactivator AIB1 at moderate levels in breast epithelium. Transgenic female mice display mammary hyperplasia at the onset of puberty, consistent with enhanced proliferation of primary mammary epithelial cultures and augmented levels of cyclin D1 and E-cadherin. Studies of BrdU incorporation revealed that AIB1 localizes to the nucleus during or after S phase, implicating a new role for AIB1 in cell-cycle progression subsequent to G1. Our findings suggest that moderate overexpression of AIB1 may represent one of the pre-neoplastic changes in breast tissue. 相似文献
18.
Richard J. Steel Maria A. OConnell Mark Searcey 《Bioorganic & medicinal chemistry letters》2018,28(16):2728-2731
The Nrf2/Keap1 interaction is a target in the development of new therapeutic agents, where inhibition of the interaction activates Nrf2 and leads to the generation of downstream anti-inflammatory effects. Peptides that mimic the β-turn in the Keap1 active site and are constrained by a disulfide bridge have high affinity for Keap1 but no intracellular activity. The introduction of a perfluoroalkyl-bridging group to constrain the peptides, coupled with a glutamic acid to proline replacement leads to a new peptide with a Ki of 6.1?nM for the Nrf2/Keap1 binding interaction, although this does not translate into intracellular activity. 相似文献
19.
Abhinav Choubey Khyati Girdhar Aditya K. Kar Shaivya Kushwaha Manoj Kumar Yadav Debabrata Ghosh Prosenjit Mondal 《The Journal of biological chemistry》2020,295(48):16359
The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear. We now provide evidence that hyperinsulinemia promotes the release of soluble pro-inflammatory mediators from macrophages that lead to systemic insulin resistance. Our observations suggest that hyperinsulinemia induces sirtuin1 (SIRT1) repression and stimulates NF-κB p65 nuclear translocation and transactivation of NF-κB to promote the extracellular release of pro-inflammatory mediators. We further showed that low-dose naltrexone (LDN) abrogates hyperinsulinemia-mediated SIRT1 repression and prevents NF-κB p65 nuclear translocation. This, in turn, attenuates the hyperinsulinemia-induced release of pro-inflammatory cytokines and reinstates insulin sensitivity both in in vitro and in vivo diet-induced hyperinsulinemic mouse model. Notably, our data indicate that Sirt1 knockdown or inhibition blunts the anti-inflammatory properties of LDN in vitro. Using numerous complementary in silico and in vitro experimental approaches, we demonstrated that LDN can bind to SIRT1 and increase its deacetylase activity. Together, these data support a critical role of SIRT1 in inflammation and insulin resistance in hyperinsulinemia. LDN improves hyperinsulinemia-induced insulin resistance by reorienting macrophages toward anti-inflammation. Thus, LDN treatment may provide a novel therapeutic approach against hyperinsulinemia-associated insulin resistance. 相似文献