首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromogranin B (CgB, secretogranin I) is a secretory granule matrix protein expressed in a wide variety of endocrine cells and neurons. Here we generated transgenic mice expressing CgB under the control of the human cytomegalovirus promoter. Northern and immunoblot analyses, in situ hybridization and immunocytochemistry revealed that the exocrine pancreas was the tissue with the highest level of ectopic CgB expression. Upon subcellular fractionation of the exocrine pancreas, the distribution of CgB in the various fractions was indistinguishable from that of amylase, an endogenous constituent of zymogen granules. Immunogold electron microscopy of pancreatic acinar cells showed co-localization of CgB with zymogens in Golgi cisternae, condensing vacuoles/immature granules and mature zymogen granules; the ratio of immunoreactivity of CgB to zymogens being highest in condensing vacuoles/immature granules. CgB isolated from zymogen granules of the pancreas of the transgenic mice aggregated in a mildly acidic (pH 5.5) milieu in vitro, suggesting that low pH-induced aggregation contributed to the observed concentration of CgB in condensing vacuoles. Our results show that a neuroendocrine-regulated secretory protein can be sorted to exocrine secretory granules in vivo, and imply that a key feature of CgB sorting in the trans-Golgi network of neuroendocrine cells, i.e. its aggregation-mediated concentration in the course of immature secretory granule formation, also occurs in exocrine cells although secretory protein sorting in these cells is thought to occur largely in the course of secretory granule maturation.  相似文献   

2.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

3.
Summary The modified protein A-gold immunocytochemical technique was applied to the localization of amylase in rat pancreatic acinar cells. Due to the good ultrastructural preservation of the cellular organelles obtained on glutaraldehyde-fixed, osmium tetroxide-postfixed tissue, the labelling was detected with high resolution over the cisternae of the rough endoplasmic reticulum (RER), the Golgi apparatus, the condensing vacuoles, the immature pre-zymogen granules, and the mature zymogen granules. Over the Golgi area, the labelling was present over the transitional elements of the endoplasmic reticulum, some of the smooth vesicular structures at thecis- andtrans-faces and all the different Golgi cisternae. The acid phosphatase-positive rigidtrans-cisternae as well as the coated vesicles were either negative or weakly labelled. Quantitative evaluations of the degree of labelling demonstrated an increasing intensity which progresses from the RER, through the Golgi, to the zymogen granules and have identified the sites where protein concentration occurs. The results obtained have thus demonstrated that amylase is processed through the conventional RER-Golgi-granule secretory pathway in the pancreatic acinar cells. In addition a concomitance has been found between some sites where protein concentration occurs: thetrans-most Golgi cisternae, the condensing vacuoles, the pre- and the mature zymogen granules, and the presence of actin at the level of the limiting membranes of these same organelles as reported previously (Bendayan, 1983). This suggests that beside their possible role in transport and release of secretory products, contractile proteins may also be involved in the process of protein concentration.  相似文献   

4.
We have examined, in the pancreatic exocrine cell, the metabolic requirements for the conversion of condensing vacuoles into zymogen granules and for the discharge of the contents of zymogen granules. To study condensing vacuole conversion, we pulse labeled guinea pig pancreatic slices for 4 min with leucine-3H and incubated them in chase medium for 20 min to allow labeled proteins to reach condensing vacuoles. Glycolytic and respiratory inhibitors were then added and incubation continued for 60 min to enable labeled proteins to reach granules in control slices. Electron microscope radioautography of cells or of zymogen granule pellets from treated slices showed that a large proportion of prelabeled condensing vacuoles underwent conversion in the presence of the combined inhibitors. Osmotic fragility studies on zymogen granule suspensions suggest that condensation may result from the aggregation of secretory proteins in an osmotically inactive form. Discharge was studied using an in vitro radioassay based on the finding that prelabeled zymogen granules can be induced to release their labeled contents to the incubation medium by carbamylcholine or pancreozymin. Induced discharge is not affected if protein synthesis is blocked by cycloheximide for up to 2 hr, but is strictly dependent on respiration. The data indicate that transport and discharge do not require the pari passu synthesis of secretory or nonsecretory proteins (e.g. membrane proteins), suggesting that the cell may reutilize its membranes during the secretory process. The energy requirements for zymogen discharge may be related to the fusion-fission of the granule membrane with the apical plasmalemma.  相似文献   

5.
We used a computer-assisted morphometry approach to analyze quantitatively the process of cytoplasmic granule formation in mouse pancreatic acinar cells stimulated with pilocarpine to induce secretion. Our findings suggest that each condensing vacuole/immature granule of pancreatic acinar cells is formed by the progressive aggregation of 106 to 128 unit progranules of narrowly fixed volume, define a range of 7.7 to 9.2 for the factor of volume condensation between the largest immature granules and the mature unit granule, and predict that the formation of a single mature unit granule by the aggregation and fusion of unit progranules involves a net reduction of at least 95% in the amount of membrane surface area associated with these structures.  相似文献   

6.
Summary The ultrastructural localization of peroxidase (PO) in the leucocytes of three teleosts (Cyprinus carpio L., Tinca tinca L., Salmo gairdneri R.) has been investigated using the 3,3-diaminobenzidine method. In the heterophilic granulocytes the granules show a species specific structure and are PO-positive at pH 7.6. They can be traced back to small granules arising near the Golgi apparatus (GA) in the promyelocyte. They coalesce to form larger granules and gradually change into the mature type. Myelocytes contain small unreactive granules, and these represent a second granule population. Eosinophils contain one PO-positive granule type (at pH 9), and these granules show a varying density during cell maturation.Basophils are present only in the Cyprinid species, and contain unreactive granules originating from precursors displaying a weakly positive reaction at pH 7.6. The active secretory organelles (RER, GA) are PO-negative, except for a weakly positive reaction in the flocculent matrix of the inner G-cisternae.In promonocytes and monocytes the granules are unreactive, but in the macrophages PO-positive staining occurs in a few small to medium sized granules, and in large vacuoles. At least some of these latter are apparently derived from phagolysosomes containing digested erythrocytes. Thrombocytes and lymphocytes are unreactive.The successive development of PO-positive and negative granule populations in the heterophils, and the PO-reactivity of eosinophils and basophils, show some similarities to the corresponding cells in higher vertebrates, but an analogous PO-positive (azurophil) granule type in monocytes seems to be absent.  相似文献   

7.
    
Summary The effect of monensin on the Golgi complex, formation of secretory granules and basal -endorphin secretion in cultured melanotrophs from the rat pituitary was studied. Earlier studies on the effect of monensin on regulated secretion have generally showed only minor effects on secretory granules. The initial (within 5 min) effect of monensin on the melanotroph was the appearance of large vacuoles at the trans-side of the thiamine pyrophosphatase-positive trans-most Golgi cisternae. This was associated with a dose-dependent inhibition of the condensation of electron-dense secretory products. After 1 h of treatment with 1 M monensin the Golgi stack was completely vacuolized. At the same time mature secretory granules were enlarged to severalfold their original size, and after 4h of treatment secretory granules were no longer observed. Despite the marked effects on granule formation and mature secretory granules monensin did not affect the basal release of -endorphin-immunoreactive material during continued incubation for up to 4h, indicating that basal peptide secretion can bypass the monensin block.  相似文献   

8.
The molecular mechanisms involved in the maturation of secretory granules, organelles that store hormones and neuropeptides, are poorly understood. As granule content proteins are processed, the composition of granule membranes changes, yielding constitutive-like secretion of immature content proteins and producing secretagogue-responsive mature granules. Constitutive-like secretion was not previously recognized as a process subject to regulation. We show that Kalirin and Trio, homologous Rho guanine nucleotide exchange factors (GEFs), which interact with a secretory granule resident protein, modulate cargo secretion from immature granules. Some of the Kalirin and Trio isoforms expressed in neuroendocrine cells colocalize with immature granules. Overexpression of their N-terminal GEF domain (GEF1) enhances secretion from immature granules, depleting cells of secretory cargo in the absence of secretagogue. This response requires GEF1 activity and is mimicked by Kalirin/Trio substrates Rac1 and RhoG. Accordingly, selective pharmacological inhibition of endogenous GEF1 activity decreases secretagogue-independent release of hormone precursors, accumulating product peptide in mature secretory granules. Kalirin/Trio modulation of cargo secretion from immature granules provides secretory cells with an extra layer of control over the sets of peptides released. Control of this step enhances the range of physiological responses that can be elicited, whereas lack of control could have pathological consequences.  相似文献   

9.
Our previous observations on the synthesis and transport of secretory proteins in the pancreatic exocrine cell were made on pancreatic slices from starved guinea pigs and accordingly apply to the resting, unstimulated cell. Normally, however, the gland functions in cycles during which zymogen granules accumulate in the cell and are subsequently discharged from it in response to secretogogues. The present experiments were undertaken to determine if secretory stimuli applied in vitro result in adjustments in the rates of protein synthesis and/or of intracellular transport. To this intent pancreatic slices from starved animals were stimulated in vitro for 3 hr with 0.01 mM carbamylcholine. During the first hour of treatment the acinar lumen profile is markedly enlarged due to insertion of zymogen granule membranes into the apical plasmalemma accompanying exocytosis of the granule content. Between 2 and 3 hr of stimulation the luminal profile reverts to unstimulated dimensions while depletion of the granule population nears completion. The acinar cells in 3-hr stimulated slices are characterized by the virtual complete absence of typical condensing vacuoles and zymogen granules, contain a markedly enlarged Golgi complex consisting of numerous stacked cisternae and electron-opaque vesicles, and possess many small pleomorphic storage granules. Slices in this condition were pulse labeled with leucine-3H and the route and timetable of intracellular transport assessed during chase incubation by cell fractionation, electron microscope radioautography, and a discharge assay covering the entire secretory pathway. The results showed that the rate of protein synthesis, the rate of drainage of the rough-surfaced endoplasmic reticulum (RER) compartment, and the over-all transit time of secretory proteins through the cells was not accelerated by the secretogogue. Secretory stimulation did not lead to a rerouting of secretory proteins through the cell sap. In the resting cell, the secretory product is concentrated in condensing vacuoles and stored as a relatively homogeneous population of spherical zymogen granules. By contrast, in the stimulated cell, secretory proteins are initially concentrated in the flattened saccules of the enlarged Golgi complex and subsequently stored in numerous small storage granules before release. The results suggest that secretory stimuli applied in vitro primarily affect the discharge of secretory proteins and do not, directly or indirectly, influence their rates of synthesis and intracellular transport.  相似文献   

10.
Intracellular transport of secretory proteins has been studied in the parotid to examine this process in an exocrine gland other than the pancreas and to explore a possible source of less degraded membranes than obtainable from the latter gland. Rabbit parotids were chosen on the basis of size (2–2.5 g per animal), ease of surgical removal, and amylase concentration. Sites of synthesis, rates of intracellular transport, and sites of packaging and storage of newly synthesized secretory proteins were determined radioautographically by using an in vitro system of dissected lobules capable of linear amino acid incorporation for 10 hr with satisfactory preservation of cellular fine structure. Adequate fixation of the tissue with minimal binding of unincorporated labeled amino acids was obtained by using 10% formaldehyde-0.175 M phosphate buffer (pH 7.2) as primary fixative. Pulse labeling with leucine-3H, followed by a chase incubation, showed that the label is initially located (chase: 1–6 min) over the rough endoplasmic reticulum (RER) and subsequently moves as a wave through the Golgi complex (chase: 16–36 min), condensing vacuoles (chase: 36–56 min), immature granules (chase: 56–116 min), and finally mature storage granules (chase: 116–356 min). Distinguishing features of the parotid transport apparatus are: low frequency of RER-Golgi transitional elements, close association of condensing vacuoles with the exit side of Golgi stacks, and recognizable immature secretory granules. Intracelular processing of secretory proteins is similar to that already found in the pancreas, except that the rate is slower and the storage is more prolonged.  相似文献   

11.
Summary The morphological effect of chronic synthetic and secretory inhibition of the intermediate lobe of the rat pituitary induced by bromocriptine treatment was studied using morphometric techniques in combination with electron microscopy. On the basis of granule diameters, a heterogeneous cell population was shown in the normal intermediate lobe. Bromocriptine treatment did not induce any change in the volume fraction, number or location of electron-dense secretory granules. Instead, there was a shift toward a more homogeneous cell population containing smaller granules, the mean granule volume being reduced by 30%. The volume fraction of electron-lucent granules or vacuoles was markedly reduced, indicating a functional significance of these organelles. The volume of the Golgi apparatus was not significantly altered, but the number of condensing granules within the Golgi area was reduced. The volume of the intermediate lobe was decreased, apparently due to a decrease in the mean cell volume.  相似文献   

12.
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.  相似文献   

13.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

14.
15.
Summary The secretory granules of rat bronchiolar Clara cells were classified into different types by their ultrastructural appearances followed by immunocytochemistry using anti-rat 10 kDa Clara cell-specific protein (10 kDa CCSP) antibody. One predominant type was the oval to round granule (type A granule), of which the matrix was composed of a map-like mixture of electron-dense and less electron-dense material. Another predominant type was the rod-shaped granule (type B granule). The content of type B granules varied from a finely fibrillar (type B1 granule) to an electron-dense, rod-like (type B3 granule) structure. Various intermediate types (type B2 granule) between type B1 and B3 granules were also found. Small cytoplasmic vesicles were found occasionally in close proximity to type B2 or B3 granule. Another type of granule (type C granule) was large, up to 8 m in diameter, and contained a moderately electron-dense amorphous matrix. Both type A and C granules stained at a similar density with the antibody. The nascent form of type A granules, which was found in the vicinity to the trans face of the Golgi apparatus, was also labeled. On the other hand, the labeling density of type B granules varied: type B1 granules were almost devoid of immunolabeling, whereas type B3 granules were intensely labeled. Type B2 granules stained with the antibody; however, the labeling density was less than that of type B3 granules. The small cytoplasmic vesicles of type B2 granules were labeled. From these findings, it is suggested that the granules of rat Clara cells consist of two types of granules of distinct origin; one appears to derive from condensing vacuoles of Golgi origin, whereas the other may be formed by membranefusions with small cytoplasmic vesicles of unknown source.  相似文献   

16.
S A Tooze 《FEBS letters》1991,285(2):220-224
In endocrine cells the regulated secretion of hormones, peptides, enzymes and neurotransmitters into the external medium occurs when mature secretory granules fuse with the plasma membrane. Secretory granules form at the trans-Golgi network (TGN) by envelopment of the dense-core aggregate of regulated secretory proteins by a specific membrane. The secretory granules initially formed at the TGN, referred to here as immature secretory granules, are morphologically and biochemically distinct from mature secretory granules. The functional similarities and differences between the immature secretory granule and the mature secretory granule, and the events involved in the maturation of the secretory granules are briefly discussed.  相似文献   

17.
In the previous paper we described an in vitro system of guinea pig pancreatic slices whose secretory proteins can be pulse-labeled with radioactive amino acids. From kinetic experiments performed on smooth and rough microsomes isolated by gradient centrifugation from such slices, we obtained direct evidence that secretory proteins are transported from the cisternae of the rough endoplasmic reticulum to condensing vacuoles of the Golgi complex via small vesicles located in the periphery of the complex. Since condensing vacuoles ultimately become zymogen granules, it was of interest to study this phase of the secretory cycle in pulse-labeled slices. To this intent, a zymogen granule fraction was isolated by differential centrifugation from slices at the end of a 3-min pulse with leucine-14C and after varying times of incubation in chase medium. At the end of the pulse, few radioactive proteins were found in this fraction; after +17 min in chaser, its proteins were half maximally labeled; they became maximally labeled between +37 and +57 min. Parallel electron microscopic radioautography of intact cells in slices pulse labeled with leucine-3H showed, however, that zymogen granules become labeled, at the earliest, +57 min post-pulse. We assumed that the discrepancy between the two sets of results was due to the presence of rapidly labeled condensing vacuoles in the zymogen granule fraction. To test this assumption, electron microscopic radioautography was performed on sections of zymogen granule pellets isolated from slices pulse labeled with leucine-3H and subsequently incubated in chaser. The results showed that the early labeling of the zymogen granule fractions was, indeed, due to the presence of highly labeled condensing vacuoles among the components of these fractions.  相似文献   

18.
Cytochemical distributions of acid phosphatase, thiamine pyrophosphatase, and ATP-diphosphohydrolase activities have been examined on thin sections of rat pancreas and on isolated zymogen-granule membranes. Acid phosphatase was found in the rigid lamellae separated from the Golgi stacked cisternae, in condensing vacuoles, and in the trans-saccules of Golgi apparatus; it was not detected in purified zymogen-granule membranes. Thiamine pyrophosphatase was detected in trans-saccules of the Golgi apparatus, in purified zymogen-granule membranes, and in the plasmalemma of the acinar cell. It was absent in condensing vacuoles. The ATP-diphosphohydrolase activity has a distribution similar to thiamine pyrophosphatase. These observations illustrate the similarity between the trans-saccules of the Golgi apparatus and the membrane of mature zymogen granules and the disparity between the latter membrane and the membrane of the condensing vacuole. They suggest that the condensing vacuole might not be the immediate precursor of the zymogen granule as commonly assumed. An alternative possibility would be that condensing vacuoles would fuse with the trans-saccule (transition) of the Golgi apparatus which in turn would form mature zymogen granules.  相似文献   

19.
The distribution of the 22 kDa secretory protein from rat ventral prostate was studied by light and electron microscopic immunocytochemistry. An anti-22 kDa protein antiserum was raised in rabbits and its specificity was tested by Western blotting. With the immunofluorescence technique, the 22 kDa protein was detected in the luminal secretions and intracellular apical granules of the ventral prostate. No reaction was observed in the seminal vesicle or dorsolateral prostate. After castration, no intracellular immunoreactivity was detected in ventral prostate, although positively labeled secretory material was retained within the acinar lumen. Restoration of normal intracellular staining pattern was incomplete after 5 daily testosterone injections. At the ultrastructural level, labeling was confined to apical secretory granules and condensing vacuoles. The 22 kDa protein separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose was shown to bind intensely to wheat germ agglutinin (WGA) but only faintly to Concanavalin A. This protein was thus demonstrated to contain N-acetylglucosamine residues. Accordingly, on tissue sections, WGA reacted intensely with condensing vacuoles and secretory granules.  相似文献   

20.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号