首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Tutar Y  Song Y  Masison DC 《Genetics》2006,174(2):851-861
Hsp70's are highly conserved essential protein chaperones that assist protein folding and prevent protein aggregation. They have modular structures consisting of ATPase, substrate-binding, and C-terminal domains. Substrate binding and release is regulated by ATP hydrolysis and nucleotide exchange, which in turn are regulated by cochaperones. Eukaryotes have constitutive (Hsc70) and stress-inducible (iHsp70) isoforms, but their functions have not been systematically compared. Using a yeast system to evaluate heterologous Hsp70's we find that primate Hsc70 supported growth but iHsp70 did not. Plant Hsc70 and iHsp70 counterparts behaved similarly, implying evolutionary conservation of this distinction. Swapping yeast and primate Hsp70 domains showed that (i) the Hsc70-iHsp70 distinction resided in the ATPase domain, (ii) substrate-binding domains of Hsp70's within and across species functioned similarly regarding growth, (iii) C-terminal domain function was important for growth, and (iv) Hsp70 functions important for cell growth and prion propagation were separable. Enzymatic analysis uncovered a correlation between substrate affinity and prion phenotype and showed that ATPase and protein-folding activities were generally similar. Our data support a view that intrinsic activities of Hsp70 isoforms are comparable, and functional differences in vivo lie mainly in complex interactions of Hsp70 with cochaperones.  相似文献   

3.
Mitochondrial preproteins that are imported via the translocase of the mitochondrial outer membrane (Tom)70 receptor are complexed with cytosolic chaperones before targeting to the mitochondrial outer membrane. The adenine nucleotide transporter (ANT) follows this pathway, and its purified mature form is identical to the preprotein. Purified ANT was reconstituted with chaperones in reticulocyte lysate, and bound proteins were identified by mass spectrometry. In addition to 70-kDa heat-shock cognate protein (Hsc70) and 90-kDa heat-shock protein (Hsp90), a specific subset of cochaperones were found, but no mitochondria-specific targeting factors were found. Interestingly, three different Hsp40-related J-domain proteins were identified: DJA1, DJA2, and DJA4. The DJAs bound preproteins to different extents through their C-terminal regions. DJA dominant-negative mutants lacking the N-terminal J-domains impaired mitochondrial import. The mutants blocked the binding of Hsc70 to preprotein, but with varying efficiency. The DJAs also showed significant differences in activation of the Hsc70 ATPase and Hsc70-dependent protein refolding. In HeLa cells, the DJAs increased new protein folding and mitochondrial import, although to different extents. No single DJA was superior to the others in all aspects, but each had a profile of partial specialization. The Hsp90 cochaperones p23 and Aha1 also regulated Hsp90-preprotein interactions. We suggest that multiple cochaperones with similar yet partially specialized properties cooperate in optimal chaperone-preprotein complexes.  相似文献   

4.
The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.  相似文献   

5.
The cytosol of mammalian cells contains several Hsp70 chaperones and an arsenal of cochaperones, including the anti-apoptotic Bag-1M protein, which regulate the activities of Hsp70s by controlling their ATPase cycles. To elucidate the regulatory function of Bag-1M, we determined its influence on nucleotide exchange, substrate release, ATPase rate, and chaperone activity of the housekeeping Hsc70 and stress-inducible Hsp70 homologs of humans. Bag-1M and a C-terminal fragment of it are potent nucleotide exchange factors as they stimulated the ADP dissociation rate of Hsc70 and Hsp70 up to 900-fold. The N-terminal domain of Bag-1M decreased the affinity of Bag-1M for Hsc70/Hsp70 by 4-fold, indicating a modulating role of the N terminus in Bag-1M action as nucleotide exchange factor. Bag-1M inhibited Hsc70/Hsp70-dependent refolding of luciferase in the absence of P(i). Surprisingly, under physiological conditions, i.e. low Bag-1M concentrations and presence of P(i), Bag-1M activates the chaperone action of Hsc70/Hsp70 in luciferase refolding. Bag-1M accelerated ATP-triggered substrate release by Hsc70/Hsp70. We propose that Bag-1M acts as substrate discharging factor for Hsc70 and Hsp70.  相似文献   

6.
《Autophagy》2013,9(1):120-121
The Bcl-2 associated athanogene (BAG) family of proteins function as cochaperones by bridging molecules that recruit molecular chaperones to target proteins. BAG-1 provides a physical link between the heat shock proteins Hsc70/Hsp70 and the proteasome to facilitate ubiquitin-proteasome-mediated protein degradation. In addition to the proteasome, protein degradation via autophagy is responsible for maintaining cellular metabolism, organelle homeostasis and redox equilibrium. Our recent report shows that autophagy plays an important role in cardiac adaptation-induced cell survival against ischemia-reperfusion injury in association with the BAG-1 protein. BAG-1 is associated with the autophagosomal membrane protein LC3-II and it may participate in the induction of autophagy via Hsc70. Moreover, another BAG family member, BAG-3, is responsible for the induction of macroautophagy in association with HspB8. These results show the involvement of BAG family members in the induction of autophagy for the degradation of damaged or oxidized proteins to promote cell survival.  相似文献   

7.
Molecular chaperone complexes containing heat shock protein (Hsp) 70 and Hsp90 are regulated by cochaperones, including a subclass of regulators, such as Hsp70 interacting protein (Hip), C-terminus of Hsp70 interacting protein (CHIP), and Hsp70-Hsp90 organizing factor (Hop), that contain tetratricopeptide repeats (TPRs), where Hsp70 refers to Hsp70 and its nearly identical constitutive counterpart, Hsc70, together. These proteins interact with the Hsp70 to regulate adenosine triphosphatase (ATPase) and folding activities or to generate the chaperone complex. Here we provide evidence that small glutamine-rich protein/viral protein U-binding protein (SGT/UBP) is a cochaperone that negatively regulates Hsp70. By "Far-Western" and pull-down assays, SGT/UBP was shown to interact directly with Hsp70 and weakly with Hsp90. The interaction of SGT/UBP with both these protein chaperones was mapped to 3 TPRs in SGT/UBP (amino acids 95-195) that are flanked by charged residues. Moreover, SGT/UBP caused an approximately 30% reduction in both the intrinsic ATPase activity of Hsc70 and the ability of Hsc70 to refold denatured luciferase in vitro. This negative effect of SGT/UBP on Hsc70 is similar in magnitude to that observed for the cochaperone CHIP. A role for SGT/UBP in protein folding is also supported by evidence that a yeast strain containing a deletion in the yeast homolog to SGT/UBP (delta SGT/UBP) displays a 50-fold reduction in recovery from heat shock compared with the wild type parent. Together, these results are consistent with a regulatory role for SGT/UBP in the chaperone complex.  相似文献   

8.
Minor capsid protein L2 of papillomaviruses plays an essential role in virus assembly by recruiting viral components to PML bodies, the proposed sites of virus morphogenesis. We demonstrate here that the function of L2 in virus assembly requires the chaperone Hsc70. Hsc70 was found dispersed in naturally infected keratinocytes and cultured cells. A dramatic relocation of Hsc70 from the cytoplasm to PML bodies was induced in these cells by L2 expression. Hsc70-L2 complex formation was confirmed by coimmunoprecipitation. The complex was modulated by the cochaperones Hip and Bag-1, which stabilize and destabilize Hsc70-substrate complexes, respectively. Cytoplasmic depletion of Hsc70 caused retention of wild-type and N-terminally truncated L2, but not of C-terminally truncated L2, in the cytoplasm. This retention was partially reversed by overexpression of Hsc70 fused to green fluorescent protein but not by ATPase-negative Hsc70. Hsc70 associated with L1-L2 virus-like particles (VLPs) but not with VLPs composed either of L1 alone or of L1 and C-terminally truncated L2. Moreover, displacement of Hsc70 from L1-L2 VLPs by encapsidation of DNA, generating pseudovirions, was found. These data indicate that Hsc70 transiently associates with viral capsids during the integration of L2, possibly via the L2 C terminus. Completion of virus assembly results in displacement of Hsc70 from virions.  相似文献   

9.
Hsc66, a stress-70 protein, and Hsc20, a J-type accessory protein, comprise a newly described Hsp70-type chaperone system in addition to DnaK-DnaJ-GrpE in Escherichia coli. Because endogenous substrates for the Hsc66-Hsc20 system have not yet been identified, we investigated chaperone-like activities of Hsc66 and Hsc20 by their ability to suppress aggregation of denatured model substrate proteins, such as rhodanese, citrate synthase, and luciferase. Hsc66 suppressed aggregation of rhodanese and citrate synthase, and ATP caused effects consistent with complex destabilization typical of other Hsp70-type chaperones. Differences in the activities of Hsc66 and DnaK, however, suggest that these chaperones have dissimilar substrate specificity profiles. Hsc20, unlike DnaJ, did not exhibit intrinsic chaperone activity and appears to function solely as a regulatory cochaperone protein for Hsc66. Possible interactions between the Hsc66-Hsc20 and DnaK-DnaJ-GrpE chaperone systems were also investigated by measuring the effects of cochaperone proteins on Hsp70 ATPase activities. The nucleotide exchange factor GrpE did not stimulate the ATPase activity of Hsc66 and thus appears to function specifically with DnaK. Cross-stimulation by the cochaperones Hsc20 and DnaJ was observed, but the requirement for supraphysiological concentrations makes it unlikely that these interactions occur significantly in vivo. Together these results suggest that Hsc66-Hsc20 and DnaK-DnaJ-GrpE comprise separate molecular chaperone systems with distinct, nonoverlapping cellular functions.  相似文献   

10.
Escherichia coli DnaK and rat Hsc70 are members of the highly conserved 70-kDa heat shock protein (Hsp70) family that show strong sequence and structure similarities and comparable functional properties in terms of interactions with peptides and unfolded proteins and cooperation with cochaperones. We show here that, while the DnaK protein is, as expected, able to complement an E. coli dnaK mutant strain for growth at high temperatures and lambda phage propagation, Hsc70 protein is not. However, an Hsc70 in which the peptide-binding domain has been replaced by that of DnaK is able to complement this strain for both phenotypes, suggesting that the peptide-binding domain of DnaK is essential to fulfill the specific functions of this protein necessary for growth at high temperatures and for lambda phage replication. The implications of these findings on the functional specificities of the Hsp70s and the role of protein-protein interactions in the DnaK chaperone system are discussed.  相似文献   

11.
Two cDNAs, encoding the stress-inducible 70-kDa heat shock protein (Hsp70) and the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), were isolated from grass carp. The Hsp70 and Hsc70 cDNAs were 2250 bp and 2449 bp in length and contained 1932 bp and 1953 bp open reading frames, respectively. Tissue distribution results showed that Hsp70/Hsc70 was highly expressed in gill, kidney, head kidney and peripheral blood lymphocytes (PBLs). Using grass carp PBLs as a cell model, effects of lipopolysaccharide (LPS) on the mRNA and protein levels of Hsp70/Hsc70 were examined. In this case, LPS increased the mRNA expression of Hsp70 in a time- and dose-dependent manner, but had no effect on Hsc70 mRNA expression. In agreement with this, LPS elevated the intracellular Hsp70 markedly, but not the Hsc70 protein levels in parallel experiments. Furthermore, Hsp70 protein was also detected in culture medium. Moreover, inhibition of LPS on Hsp70 release in a time-dependent manner was observed, indicating that there may be a dynamic balance between Hsp70 stores and Hsp70 release in grass carp PBLs following exposure to LPS. Taken together, these results not only shed new insights into the different regulations of LPS on Hsp70/Hsc70 gene expression, protein synthesis and release, but also provide a basis for further study on the functional role of Hsp70 in fish immune response.  相似文献   

12.
Carbon tetrachloride (CCl4) induces liver damage, apparently through the formation of free-radical metabolites. Molecular chaperones such as heat shock protein (Hsp) of 70 kDa have been found to protect cells from various stresses. We previously found that cytosolic chaperone pairs of the Hsp70 family and their DnaJ homolog cochaperones prevent nitric oxide-mediated apoptosis and heat-induced cell death. Expression of cytosolic chaperones, including Hsp70; heat shock cognate (Hsc) 70; and DnaJ homologs dj1 (DjB1/Hsp40/hdj-1), dj2 (DjA1/HSDJ/hdj-2), dj3 (DjA2), and dj4 (DjA4), in the liver of CCl4-treated rats was analyzed. Messenger ribonucleic acids for all these chaperones were markedly induced 3-12 hours after CCl4 treatment with a maximum at 6 hours. Hsp70 and dj1 proteins were markedly induced at 6-24 hours with a maximum at 12 hours, whereas dj2 and dj4 were moderately induced at around 12 hours. Hsc70 was weakly induced after treatment, and dj3 was little induced. To better understand the significance of the induction of chaperones, the effect of preinduction of chaperones on CCl4-induced liver damage was analyzed. When chaperones were preinduced in the liver by heat treatment, increase in serum alanine aminotransferase activity after CCl4 treatment was significantly attenuated. Hsp90, another major cytosolic chaperone, also was induced by heat treatment. On the other hand, Mn- and Cu/Zn-superoxide dismutase were not induced by heat treatment or by CCl4 treatment. These results suggest that cytosolic chaperones of Hsp70 and DnaJ families or Hsp90 (or both) are induced in CCl4-treated rat liver to protect the hepatocytes from the damage being inflicted.  相似文献   

13.
14.
Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70   总被引:1,自引:0,他引:1       下载免费PDF全文
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.  相似文献   

15.
Hsp70 proteins are key to maintaining intracellular protein homeostasis. To carry out this task, they employ a large number of cochaperones and adapter proteins. Here, we review what is known about the interaction between the chaperones and partners, with a strong slant toward structural biology. Hsp70s in general, and Hsc70 (HSPA8) in particular, display an amazing array of interfaces with their protein cofactors. We also review the known interactions between Hsp70s with lipids and with active compounds that may become leads toward Hsp70 modulation for treatment of a variety of diseases.  相似文献   

16.
Apoptosis contributes to cell death after cerebral ischaemia. A quantitative proteomics approach has been employed to define alterations in protein levels in apoptosis induced with staurosporine (STS). Human neuroblastoma derived SH-SY5Y cells were treated with STS (500 nM for 6 h) to induce apoptosis. Quantitative 2-DE was used to determine the changing protein levels with MALDI-TOF MS identification of proteins. Of the 154 proteins analysed, 13 proteins were significantly altered as a result of the apoptotic stimulus; ten of the proteins showed an increase in level with STS and were identified as heat shock cognate 71 (Hsc71), two isoforms of heat shock protein 70 (Hsp70), glucose regulated protein 78 (GRP78), F-actin capping protein, stress-induced phosphoprotein 1, chromatin assembly factor 1 (CAF-1), protein disulphide isomerase A3 (PDI A3) precursor, transitional ER ATPase and actin interacting protein 1 (AIP 1). Three proteins which displayed significant decrease in levels with STS were identified as tubulin, vimentin and glucose regulated protein 94 (GRP94). The functional roles and subcellular locations of these proteins collectively indicate that STS-induced apoptosis provokes induces an unfolded protein response involving molecular chaperones, cochaperones and structural proteins indicative of ER stress.  相似文献   

17.
18.
19.
BAG-1 family of cochaperones in the modulation of nuclear receptor action   总被引:5,自引:0,他引:5  
BAG-1 is a family of cochaperones consisting of at least four polypeptides BAG-1L, BAG-1M/RAP46, BAG-1 and p29. These proteins are translated from the same mRNA at alternative translation initiation sites. They possess conserved carboxy-terminal sequences which enable them to bind and inhibit the action of the molecular chaperone Hsp70/Hsc70. BAG-1 was the first member in the family of the BAG-1 proteins to be isolated. It was identified as an anti-apoptotic protein because of its ability to bind and augment the activity of the anti-death protein, Bcl-2. Since then other BAG-1 proteins have been identified and shown to interact with several cellular factors including nuclear receptors. Recent findings show that the effect of the BAG-1 proteins on nuclear receptors ranges from inhibition to enhancement of the transactivation functions of the receptors. Available data on the negative regulation of glucocorticoid receptor (GR) action by the BAG-1 proteins identify two modes of action: inhibition of the hormone binding activity of the GR and a more direct nuclear action at the level of regulation of the transactivation function of the receptor. In the latter case, the BAG-1 proteins repress DNA binding by the GR in a process that requires prior binding of Hsp70/Hsc70 to the receptor. Positive regulatory action of the BAG-1 proteins on nuclear receptors has also been reported which may involve yet other mechanisms. This review puts together recent findings on the action the BAG-1 proteins and presents them as a novel group of regulators of action of nuclear receptor.  相似文献   

20.
Hsp70 and Hsp90 molecular chaperones play essential roles in protein expression and maturation, and while catalyzing protein folding they can "decide" to target mis-folded substrates for degradation. In this report, we show for the first time distinct but partially overlapping requirements for Hsp90, Hsp70, and an Hsp70 nucleotide exchange factor (NEF) at different steps during the biogenesis of a model substrate, firefly luciferase (FFLux), in yeast. By examining the inducible expression of FFLux in wild type cells and in specific yeast mutants, we find that the Fes1p NEF is required for efficient FFLux folding, whereas the Hsp70, Ssa1p, is required for both protein folding and stability, and to maintain maximal FFLux mRNA levels. In contrast, Hsp90 function was primarily necessary to express the FFLux-encoding gene from an inducible promoter. Together, these data indicate previously unknown roles for these proteins and point to the complexity with which chaperones and cochaperones function in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号