首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor necrosis factor (TNF) is a proinflammatory cytokine that plays a pivotal role in the regulation of the human immune system. Studies of the TNF functional topography are a challenging task in bioengineering. We have produced genes encoding the peptides D1 (3–30), D2 (31–85), D3 (86–114), and D4 (115–157), which correspond to isolated fragments of the informational structure of TNF. These genes were expressed in E. coli cells at a high level in a soluble form. We have shown that hybrid proteins SD2 and SD4 tend to form high-molecular aggregates, which can be destroyed by urea treatment. Purified peptides D1, D3, and D4 possess a similar secondary structure with dominating beta-structural elements. The analysis of the biological activity of these peptides has shown that they do not exhibit cytotoxic properties on L929 murine fibroblasts. The simultaneous addition of D1 with full-length TNF results in the concentration dependent suppression of TNF activity.  相似文献   

2.
There is considerable evidence that orthopaedic wear debris plays a crucial role in the pathology of aseptic loosening of joint prostheses. The purpose of the present study was to evaluate the influence of ultra-high-molecular-weight polyethylene (UHMW-PE) on the cytokine response in a modified in vitro model. UHMW-PE particles (psi < 7.5 microm) were suspended in soluble collagen type I and subsequently solidified in different concentrations (105,106 and 107 particles per well) on the bottom of the wells. Human bone marrow cells in a concentration of 3 x 106 cells per well were seeded on the collagen-particle substrata and maintained for up to 12 days. The cytokine response (IL-1_, IL-6 and TNF-_) of the cells to the particles were examined by ELISA compared to cells on control collagen surfaces without any particles. Assays for viability using LDH activity were done immediately. Light and scanning microscopic evaluation revealed that the UHMWPE particles, which have built large conglomerates (psi7.5_m), were mainly surrounded by the cells and less phagocytosed. The results of the cytokine release revealed significant differences in interleukin (IL)6, tumor necrosis factor (TNF)- _ and IL-1beta. The cell viability was not affected by the UHMW-PE particles. The results demonstrate that the particle induced cytokine response by UHMW-PE is mainly by the release of Interleukin 6 and TNF- _. Moreover the results confirm that the present method is useful to evaluate the in vitro effects of UHMW-PE wear particles with direct particle cell contact.  相似文献   

3.
D M Jue  B Sherry  C Luedke  K R Manogue  A Cerami 《Biochemistry》1990,29(36):8371-8377
The biosynthesis and processing of cachetin/tumor necrosis-factor (TNF) were examined in the murine macrophage-like cell line RAW 264.7. Lipopolysaccharide-stimulated cells secreted both glycosylated and nonglycosylated 17-kilodalton (kDa) mature cachectin/TNF into the culture medium. Secreted cachectin/TNF was derived from membrane-associated precursors that were precipitated by polyclonal antisera raised against either the mature protein or synthetic peptide fragments of the 79 amino acid cachectin/TNF prohormone sequence. About half of the precursors were N-glycosylated, apparently cotranslationally. The cachectin/TNF precursors were then proteolytically cleaved to release soluble mature cytokine into the medium, while the membrane-bound 14-kDa presequence remained cell associated. During the period of LPS stimulation, the amount of macrophage cell surface cachectin/TNF remained at a low level, suggesting that both nonglycosylated and glycosylated precursors of cachectin/TNF are efficiently cleaved by these cells. These findings suggest the presence of a unique mechanism for the secretion of cachectin/TNF.  相似文献   

4.
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.  相似文献   

5.
Protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the transfer of GlcNAc to O-mannose of glycoproteins. Mutations in the POMGnT1 gene cause a type of congenital muscular dystrophy called muscle-eye-brain disease (MEB). We evaluated several truncated mutants of POMGnT1 to determine the minimal catalytic domain. Deletions of 298 amino acids in the N-terminus and 9 amino acids in the C-terminus did not affect POMGnT1 activity, while larger deletions on either end abolished activity. These data indicate that the minimal catalytic domain is at least 353 amino acids. Single amino acid substitutions in the stem domain of POMGnT1 from MEB patients abolished the activity of the membrane-bound form but not the soluble form. This suggests that the stem domain of the soluble form of POMGnT1 is unnecessary for activity, but that some amino acids play a crucial role in the membrane-bound form.  相似文献   

6.
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.  相似文献   

7.
The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.  相似文献   

8.
Bacteriophage PRD1 contains DNA, 17 proteins, and lipid. The assembly pathway involves the formation of empty particles that contain lipid and all of the proteins of mature virions, with the possible exception of one. The major and minor capsid proteins, P3 and P5, occur as soluble multimers before they appear in the empty particles. Nonsense mutants of PRD1 that involve structural proteins of the virion other than P3 form particles that are missing only the defective protein. Those mutants that are unable to form P3 do not form particles. Mutations in two other genes that code for nonstructural proteins (P10, which is membrane bound, and P17, which is soluble) result in the absence of particles. Protein P2 is necessary for adsorption to host cells. Protein P9 is necessary for particle filling with DNA, whereas P20 and P22 are necessary for stable DNA packaging. Electron micrographs of infected cells confirmed the gradient analysis of particle formation. No free vesicles were observed in mutants that could not form complete empty particles, indicating that there are no free intermediate particles before the empty virions.  相似文献   

9.
10.
Tumor necrosis factor (TNF) is a polyfunctional cytokine, one of the key mediators of inflammation and innate immunity. On the other hand, systemic or local TNF overexpression is typical of such pathological states as rheumatoid arthritis, psoriasis, Crohn’s disease, septic shock, and multiple sclerosis. Neutralization of TNF activity has a marked curative effect for some diseases; therefore, the search for various TNF blockers is a promising field of protein engineering and biotechnology. According to the previously developed concept concerning the possibility of designing dominant-negative mutants, the following TNF variants have been studied: TNFY87H + A145R, TNFY87H + A96S + A145R, and TNFV91N + A145R. All of these form inactive TNF heterotrimers with the native protein. The ability of mutants to neutralize the effect of TNF was investigated. The addition of mutants to the native protein was shown to provide a concentration-dependent suppression of TNF cytotoxicity against the mouse fibroblast cell line L929. Thus, novel inhibitors of human TNF can be engineered on the basis of these muteins.  相似文献   

11.
In this study it was demonstrated that cross-linking of FcR on human monocytes induces the secretion of the cytotoxic and immunoregulatory cytokine TNF. Both soluble and insoluble immune complexes, solid-phase antibody and antibody-coated phagocytizable particles were used to cross-link FcR on monocytes. It was observed that monocytes secreted large amounts of TNF in each of these instances. Kinetic studies performed with soluble immune complexes showed that TNF was secreted very rapidly, e.g., within 2 h after addition of immune complexes to monocytes. These findings are relevant for the understanding of FcR-mediated immune responses by monocytes and macrophages, for example antibody-dependent cellular cytotoxicity and phagocytosis, and for disease states associated with circulating or tissue-fixed immune complexes.  相似文献   

12.
The heat shock protein 90 (Hsp-90) inhibitor, geldanamycin, and the proteasome inhibitor, MG-132, both inhibited tumor necrosis factor receptor 1 (TNF-R1)- but not TRAIL-induced apoptosis in Kym-1 cells, suggesting that TNF-R1-induced cell death is dependent on NF-kappaB activation in this model. Triggering of TNF-R1 by agonistic antibodies led to cell-type specific induction of endogenous TNF and apoptosis, the latter of which was abrogated by neutralizing TNF specific antibodies. TNF-R1-stimulated cells expressed TNF mainly in a cell-associated form, suggesting that the endogenously produced TNF act in its membrane-bound form. Geldanamycin failed to inhibit apoptosis induction by a combination of agonistic TNF-R1- and TNF-R2-specific antibodies, indicating that both TNF receptors co-operate in TNF-R1-triggered apoptosis in Kym-1 cells. Thus, TNF-R1 stimulation can elicit a strong and rapid apoptotic response via induction of membrane TNF and subsequent cooperation of TNF-R1 and TNF-R2. Moreover, we give evidence that this mechanism circumvents the need of the prolonged presence of exogenous soluble TNF for TNF-R1-mediated apoptosis induction.  相似文献   

13.
Carboxypeptidase E (CPE), a peptide hormone-processing enzyme, is present within secretory granules in both a soluble form and a form which is membrane-bound at pH 5.5 but soluble at neutral pH. Antisera raised against a peptide corresponding to the predicted COOH-terminus of CPE bind to the membrane-associated form of CPE but not to the soluble form. This COOH-terminal region is predicted to form an amphiphilic alpha-helix, containing several pairs of hydrophobic residues separated by hydrophilic residues. Synthetic COOH-terminal peptides 11-24 residues in length are able to bind to bovine pituitary membranes and can be extracted by conditions that extract the membrane-bound form of CPE. The influence of pH on the membrane binding of a 21-residue COOH-terminal peptide is similar to the membrane binding of CPE: at pH values less than 6 the majority of the peptide is membrane-bound, while at pH values above 8 less than 20% is membrane-bound. Both the 21-residue COOH-terminal peptide and the purified membrane form of CPE, but not the soluble form, partition into Triton X-114 only at low pH (pH less than 6). Combined polar and hydrophobic interactions of the COOH-terminal peptide appear to be responsible for the reversible, pH-dependent association of CPE with membranes.  相似文献   

14.
Succinate dehydrogenase is a conserved membrane-bound enzyme consisting of two nonidentical subunits: a flavo iron-sulfur protein (Fp) subunit, containing a covalently bound flavin, and an iron-sulfur protein (Ip) subunit. Bacillus subtilis succinate dehydrogenase in wild type bacteria and 12 well characterized succinate dehydrogenase-defective mutants were examined by low temperature EPR spectroscopy to characterize the enzyme and study subunit location and biosynthesis of its iron-sulfur clusters. The wild type B. subtilis enzyme contains iron-sulfur clusters which are analogous to clusters S-1 and S-3 of bovine heart succinate dehydrogenase but with slightly different EPR characteristics. Spins from cluster S-2 were not detectable as in the case of the intact form of bovine heart succinate dehydrogenase. However, dithionite reduction of the B. subtilis enzyme greatly enhanced spin relaxation of the ferredoxin-type cluster S-1, indicating the presence of the cluster S-2. Iron-sulfur cluster S-1 was found to be assembled in soluble succinate dehydrogenase subunits in the cytoplasm, but only if full-length Fp polypeptides and relatively large fragments of Ip polypeptides were present. Cluster S-1 was not detected in mutants with soluble mutated Fp polypeptides or in a mutant totally lacking Ip subunit polypeptide. Iron-sulfur clusters S-1, S-2, and S-3 were assembled also when the covalently bound flavin in the Fp subunit was absent. Clusters S-1 and S-3 in the membrane-bound flavin-deficient succinate dehydrogenase were not reduced by succinate but could be reduced by electron transfer from NADH dehydrogenase via the menaquinone pool.  相似文献   

15.
To determine the minimum requirement in the 76-residue leader sequence of pro-tumor necrosis factor (TNF) for membrane translocation across the endoplasmic reticulum (ER) and for the maturation of pro-TNF, we constructed pro-TNF mutants in which a part of the transmembrane domain of pro-TNF was directly linked to the N-terminus of the mature domain, and evaluated their translocational behavior across the ER-membrane and their secretion from the transfected cells. The in vitro translation/translocation assay involving a canine pancreatic microsomal membrane system including a mutant, Delta-75-47, -32-1, revealed that the N-terminal half of the transmembrane domain of pro-TNF consisting of 14 residues functioned as a cleavable signal sequence; it generated a cleaved form of TNF having a molecular mass similar to that of mature TNF. Analysis of the cleavage site by site-directed mutagenesis indicated that the site was inside the leader sequence of this mutant. When the mutant, Delta-75-47, -32-1, was expressed in COS-1 cells, efficient secretion of a biologically active soluble TNF was observed. Further deletion of the hydrophobic domain from this mutant inhibited the translocation, indicating that some extent of hydrophobicity is indispensable for the membrane translocation of the mature domain of TNF. Thus, the N-terminal half of the transmembrane domain of pro-TNF could function as a cleavable signal sequence when linked to the mature domain of TNF, and secretion of a biologically active secretory form of TNF could be achieved with this 14-residue hydrophobic segment. In intact pro-TNF, however, this 14-residue sequence could not function as a cleavable signal sequence during intracellular processing, indicating that the remainder of the 76-residue leader sequence of pro-TNF inhibits the signal peptide cleavage and thus enables the leader sequence to function as a type II signal-anchor sequence that generates a transmembrane form of TNF.  相似文献   

16.
The synthesis of galactose-displaying core-shell nanospheres exhibiting both fluorescent and magnetic properties by grafting a glycocopolymer consisting of 6-O-methacryloylgalactopyranose (MAGal) and 4-(pyrenyl)butyl methacrylate (PyMA) onto magnetic silica particles via thiol-ene chemistry is reported. Magnetization measurements indicated that neither the encapsulation of the iron oxide particles into silica nor the grafting of the glycocopolymer chains had a significant influence on the superparamagnetic properties. This not only simplifies the purification of the particles but may facilitate the use of the particles in applications such as hyperthermia or magnetic resonance imaging (MRI). Furthermore, the hydrophilic glycopolymer shell provided solubility of the particles in aqueous medium and enabled the uptake of the particles into the cytoplasm and nucleus of lung cancer cells via carbohydrate-lectin recognition effects.  相似文献   

17.
The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CII-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CII-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related.  相似文献   

18.
Cai H  Zhu N  Jiang Y  He P  Fang Y 《Biosensors & bioelectronics》2003,18(11):1311-1319
Synthesis of the novel Cu@Au alloy nanoparticle and its application in an electrochemical DNA hybridization detection assay is described in this article. We report a low-temperature method for generating core-shell particles consisting of a core of Cu and a thin layer of Au shell that can be readily functionalized with oligonucleotides. Core-shell Cu@Au particles were successfully labeled to a 5'-alkanethiol capped oligonucleotides probe that is related to the colitoxin gene. The DNA genetic sensing assay relies on the electrostatic adsorption of target oligonucleotides onto conducting polypyrrole (PPy) surface at the glassy carbon electrode (GCE), and its hybridization to the alloy particle-oligonucleotides DNA probe. Hybridization events between probe and target were monitored by the release of the copper metal atoms anchored on the hybrids by oxidative metal dissolution and the indirectly determination of the solubilized Cu2+ ions by sensitive anodic stripping voltammetry (ASV). The detection limit is 5.0 pmol l(-1) of target oligonucleotides. The Cu@Au core-shell nanoparticles combining the surface modification properties of Au with the good electrochemical activity of Cu core shows their perspective application in the electrochemical DNA hybridization analysis assay.  相似文献   

19.
PC-1 is a type II membrane-bound glycoprotein consisting of a short N-terminal cytoplasmic domain and a large C-terminal extracellular domain, which contains phosphodiesterase/pyrophosphatase activity. When Jurkat T cells were cultured with dibutyryl cAMP, the membrane-bound PC-1 and its soluble form were induced. They were purified as a homodimer of a 130 kDa peptide and a 120 kDa monomer, respectively, and the same two forms could also be obtained from COS-7 cells that had been transfected with PC-1 cDNA. The membrane-bound and soluble forms of PC-1 were indistinguishable from each other in terms of their enzyme kinetics and N-glycosylated moieties. Thus, the enzymatically active and fully glycosylated form of soluble PC-1 was utilized to search for its interacting molecules. The phosphodiesterase/pyrophosphatase activity of PC-1 was competitively inhibited by glycosaminoglycans, such as heparin and heparan sulfate, which are the major components of the extracellular matrix. PC-1 was capable of binding to heparin-Sepharose and the binding was inhibited in the presence of the enzyme substrate, ATP or its nonhydrolyzable analog. The enzyme activity of PC-1 itself, however, was not required for the binding to heparin-Sepharose. These results suggest that PC-1 might function as an adhesion molecule independent of its enzyme activity to associate with glycosaminoglycans in the extracellular matrix.  相似文献   

20.
TNF, a proinflammatory and immune-regulatory cytokine, is a potent apoptotic stimulus in vitro. However, there have been few examples of a physiologic role for TNF-induced apoptosis in vivo. Here, we describe a novel role for TNF in prostate epithelial cell apoptosis after androgen withdrawal. Employing high-resolution serial magnetic resonance imaging to measure mouse prostate volume changes over time, we demonstrate that the extent of castration-induced prostate regression is significantly reduced in mice null for either the Tnf or Tnfr1 genes but not mice deficient for TNF-related apoptosis-inducing ligand or Fas signaling. Wild-type mice receiving soluble TNF (sTNF) receptor 2 (to bind TNF and block signaling) before castration exhibit an identical reduction of prostate regression. Together, these data indicate that uniquely among known extrinsic death signals, TNF is required for castration-induced prostate regression. Additionally, membrane-bound TNF protein and stromal cell specific TNF mRNA levels increase in rat prostate after castration. This is consistent with a paracrine role for TNF in prostate regression. When injected into the peritoneum of Tnf(-/-) mice at the time of castration, sTNF restores normal levels of prostate regression. However, wild-type mice receiving sTNF in the absence of castration do not exhibit prostate regression, indicating that TNF alone is not sufficient but acts in the context of additional castration-induced signals. These findings support a physiologic role for TNF in prostate regression after androgen withdrawal. Understanding this role may lead to novel therapies for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号