首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

3.
4.
The in situ primary production of three common under-story members of the Rhodophyta in South African west coast kelp beds was determined monthly for a year using dissolved oxygen techniques. Strong seasonal patterns of photosynthesis and respiration were evident in all three species. Net photosynthesis of all three species was greatest in spring (October) and lowest in winter (June). Increasing photosynthesis in late winter coincided with increasing ambient irradiance and photoperiod, whereas decreasing photosynthesis in summer was not explained by changes in the environmental parameters measured. We suggest that this may he due to an innate pattern related to some other seasonal plant activity such as reproduction. Seasonal Pmax and Ik values reveal that the obligate understory species, B. prolifera and E. obtusa, are shade-adapted whereas G. radula, a low intertidal and shallow subtidal dominant, is sun-adapted. Low C: X ratios consistent with a high nutrient environment and high rates of productivity were found in all three species. Net photosynthesis to respiration (Pn:R) ratios were fairly constant for B. prolifera and E. obtusa, implying that then photosynthetic processes were governed more by seasonal variations in irradiance than by instantaneous light availability. The Pn: R ratio of G. radula was variable, suggesting that this species is more responsive to rapid fluctuations in irradiance and may therefore be adapted for rapid growth during periods of high irradiance.  相似文献   

5.
With an increase in growth irradiance (from 15 to 100 % of full sunlight, I15 to I100), the maximum net photosynthetic rate (P max), compensation (CI) and saturation irradiances of A. annua increased. At full sunlight, A. annua had a high capacity of photosynthesis, while at low irradiance it maintained a relatively high P max with a low CI. The height and diameter growth, total and leaf biomass, and artemisinin content of A. annua decreased with the decrease in irradiance, which might be connected with lower photosynthesis at lower than at higher irradiance. Irradiances changed biomass allocations of A. annua. The leaf/total mass ratio of A. annua increased with decreasing irradiance, but the root/total mass ratio and root/above-ground mass generally increased with increasing irradiance. Thus A. annua can grow in both weak and full sunlight. However, high yield of biomass and artemisinin require cultivation in an open habitat with adequate sunshine.  相似文献   

6.
The photosynthetic and respiratory responses to irradiance, salinity and temperature of the red alga, Gracilaria vermiculophylla, collected from Kumamoto, Shizuoka and Iwate in Japan were studied using an electronic Dissolved Oxygen sensor. The parameters derived from the photosynthesis versus irradiance relationship indicated the potential to acclimate to broad irradiance variations in all of the populations of G. vermiculophylla collected from these three sites. In addition, the light-saturated photosynthesis rate (P max) and the dark respiration rate of all populations increased with increasing temperature up to 20–30°C, while the P max decreased at 35°C. All populations also showed a broad variation of photosynthetic responses to salinity changes in the range from 10 to 30 psu. On the other hand, the population from Iwate showed high photosynthetic efficiency, especially in the temperature range of 5–10°C, and showed low values of saturation irradiance compared to the populations from Shizuoka and Kumamoto. These results suggest that there is greater potential to acclimate to low irradiance and low temperature in the population from Iwate compared to those from the Shizuoka and Kumamoto populations. However, the P max of the populations from Iwate and Shizuoka was reached at 20°C and 25°C, respectively, while the Kumamoto population reached P max at 30°C. This implies that the latter population has greater potential to tolerate higher temperatures than the former. Such characteristics in photosynthesis and respiration of G. vermiculophylla collected from the three locations probably indicate an acclimation to prevailing environmental conditions in their respective habitats.  相似文献   

7.
The growth, photosynthesis, and respiration of the marine diatom Phaeodactylum tricornutum were examined under photoautotrophic and mixotrophic conditions. 100 mM glycerol, acetate, and glucose significantly increased specific growth rate, and mixotrophic growth achieved higher biomass concentrations. Under mixotrophic conditions, respiration rate (R d) and light compensation irradiance (I c) were significantly higher, but net maximum photosynthetic O2 evolution rate (P m) and saturation irradiance (I k) were depressed. Organic carbon sources decreased the cell photosynthetic pigment content and chlorophyll a to c ratio, but with a higher carotenoid to chlorophyll a ratio. Ratios of variable to maximum chlorophyll fluorescence (F v/F m) and 77 K fluorescence spectra of mixotrophic cells indicated a reduced photochemical efficiency of photosystem II. The results were accompanied by lower electron transport rate. Therefore, organic carbon sources reduced the photosynthesis efficiency, and the enhancement of biomass of P. tricornutum implied that organic carbon sources had more pronounced effects on respiration than on photosynthesis.  相似文献   

8.
Feng  Y.-L.  Cao  K.-F.  Zhang  J.-L. 《Photosynthetica》2004,42(3):431-437
We investigated the effect of growth irradiance (I) on photon-saturated photosynthetic rate (P max), dark respiration rate (R D), carboxylation efficiency (CE), and leaf mass per unit area (LMA) in seedlings of the following four tropical tree species with contrasting shade-tolerance. Anthocephalus chinensis (Rubiaceae) and Linociera insignis (Oleaceae) are light-demanding, Barringtonia macrostachya (Lecythidaceae) and Calophyllum polyanthum (Clusiaceae) are shade-tolerant. Their seedlings were pot-planted under shading nets with 8, 25, and 50 % daylight for five months. With increase of I, all species displayed the trends of increases of LMA, photosynthetic saturation irradiance, and chlorophyll-based P max, and decreases of chlorophyll (Chl) content on both area and mass bases, and mass-based P max, R D, and CE. The area-based P max and CE increased with I for the light-demanders only. Three of the four species significantly increased Chl-based CE with I. This indicated the increase of nitrogen (N) allocation to carboxylation enzyme relative to Chl with I. Compared to the two shade-tolerants, under the same I, the two light-demanders had greater area- and Chl-based P max, photosynthetic saturation irradiance, lower Chl content per unit area, and greater plasticity in LMA and area- or Chl-based P max. Our results support the hypothesis that light-demanding species is more plastic in leaf morphology and physiology than shade-tolerant species, and acclimation to I of tropical seedlings is more associated with leaf morphological adjustment relative to physiology. Leaf nitrogen partitioning between photosynthetic enzymes and Chl also play a role in the acclimation to I.  相似文献   

9.
1. Three common species of freshwater phytoplankton, the diatom Nitzschia sp., green alga Sphaerocystis schroeteri and cyanobacterium Phormidium luridum, were grown under contrasting daylengths [18 : 6 h light : dark cycles (LD) versus 6 : 18 h LD] and phosphorus (P) regimes (P‐sufficient versus 1 μm P). The rates of growth and photosynthesis, as well as growth efficiencies and pigment concentrations, were compared among treatments. 2. The growth and photosynthetic parameters of the three species depended on both P status and daylength in a species‐specific way. The responses to P limitation depended on daylength and, conversely, the responses to daylength depended on P status. 3. Growth rates and the maximum rates of photosynthesis (Pmax) of all species decreased under P limitation under both light regimes. However, the decrease of Pmax because of P limitation was greater under long daylength. The Pmax of the green alga S. schroeteri decreased the most (ca. sixfold) under P limitation compared with the other two species. The photosynthesis saturation parameter Ik also decreased under P limitation; the decline was significant in Nitzschia and Sphaerocystis. P‐limitation significantly increased photoinhibition (β) in Nitzschia and Sphaerocystis, but not in Phormidium. The excess photochemical capacity (the ratio of the maximum photosynthesis rate to the photosynthesis rate at the growth irradiance), characterising the ability to utilise fluctuating light, was significantly lower under P limitation. 4. The growth efficiency (growth rate normalised to daylength) declined with increasing daylength in all species. Under short daylength the cyanobacterium Phormidium had the lowest growth efficiency of the three species. 5. The cellular chlorophyll a concentration in both Nitzschia and Sphaerocystis was significantly higher under short daylength, but only under P‐sufficient conditions. In Nitzschia, under short daylength, P‐limitation significantly decreased cellular chlorophyll concentration. In contrast, P‐limitation increased cellular chlorophyll concentration in Sphaerocystis, but under long daylength only. The ratio of chlorophyll a to b in the green alga also declined under short daylength and under P‐limited conditions.  相似文献   

10.
SUMMARY.
  • 1 The macrophyte community of Lake George, New York is diverse, composing of forty-eight submersed species representing a wide range of habitats, depth ranges and life-history strategies. The photosynthetic rates of seven representative submersed aquatic macrophytes were determined in laboratory studies using measurements of short-term changes in oxygen concentration at eight light intensities from 0 to 1000 μmol m?2 s?1 at 20°C. The species examined were: Elodea canadensis, Myriophyllum spicatum, Potamogeton amplifolius, P. gramineus, P. praelongus, P. robbinsii, and Vallisneria americana.
  • 2 Comparisons of maximum net photosynthesis, Michaelis–Menten Vmax and Km for photosynthesis versus irradiance, and dark respiration rates correlated with changes in community composition and species distribution with depth.
  • 3 In particular, Myriophyllum spicatum exhibited a high photosynthetic rate (Vmax) and high light requirement (both in compensation point and higher half-saturation constant (Km) indicative of a high light-adapted species. In contrast, the native species exhibited shade-tolerant characteristics.
  • 4 Simple daily carbon balance models indicate that M. spicatum has a higher positive carbon balance near the surface than the native species, but carbon balance decreased more rapidly with decreased light. All species showed greatly reduced carbon balances under a simulated M. spicatum canopy, indicating that native species might not survive. Myriopyllum spicatum leaves would experience self-shading and eventual sloughing.
  相似文献   

11.
The influence of growth irradiance on the non-steady-state relationship between photosynthesis and tissue carbon (C) and nitrogen (N) pools in Chaetomorpha linum (Muller) Kutzing in response to abrupt changes in external nitrogen (N) availability was determined in laboratory experiments. For a given thallus N content, algae acclimated to low irradiance consistently had a higher rate of light-saturated photosynthesis (Pmax normalized to dry weight) than algae acclimated to saturating irradiance; for both treatments, Pmax was correlated to thallus N. Both Pmax and the photosynthetic efficiency (αdw) were correlated in C. linum grown at either saturating or limiting irradiance over the range of experimental conditions, indicating that variations in electron transport were coupled to variations in C-fixation capacity despite the large range of tissue N content from 1.1% to 4.8%. Optimizing both α and Pmax and thereby acclimating to an intermediate light level may be a general characteristic of thin-structured opportunistic algae that confers a competitive advantage in estuarine environments in which both light and nutrient conditions are highly variable. Nitrogen-saturated algae had the same photosynthesis–irradiance relationship regardless of light level. When deprived of an external N supply, photosynthetic rates did not change in C. linum acclimated to low irradiance despite a two-fold decrease in tissue N content, suggesting that the active pools of chlorophyll and Rubisco remained constant. Both α and Pmax decreased immediately and continuously in algae acclimated to high irradiance on removal of the N supply even though tissue N content was relatively high during most of the N-starvation period, indicating a diversion of energy and reductant away from C fixation to support high growth rates. Carbon and nitrogen assimilation were equally balanced in algae in both light treatments throughout the N-saturation and -depletion phases, except when protein synthesis was limited by the depletion of internal N reserves in severely N-starved high-light algae and excess C accumulated as starch stores. This suggests that the ability for short-term adjustment of internal allocation to acquire N andC in almost constant proportions may be especially beneficial to macroalgae living in environments characterized by high variability in light levels and nutrient supply.  相似文献   

12.
Parameters of photosynthesis vs. irradiance curves varied markedly between tissues from microsites along the < 10-cm axes of the tropical intertidal red algae Ahnfeltiopsis concinna (J. Ag.) Silva et DeCew and Laurencia mcdermidiae (J. Ag.) Abbott. Differences in photosynthetic performance between tissues from canopy and understory microsites indicates that L. mcdermidiae exhibited an expected sun-to-shade acclimation but over the space of < 10 cm. Respiration, Ic, Ik, and Pmax values were significantly lower in tissues from the understory relative to tissues from the canopy of L. mcdermidiae, while photosystem I (PS I) sizes (PSU I) were significantly higher in tissues from understory microsites. Quantum efficiency was unchanged. Ahnfeltiopsis concinna, in contrast, exhibited higher α in tissues from understory rather than canopy microsites. The values of Pmax for tissues from the canopy of A. concinna were not higher than the understory, while PSU O2(PS II size) of tissues from canopy microsites were unusually higher than those of understory microsites. These characteristics suggest a high degree of irradiance stress in tissues from the canopy of A. concinna, the highest tidal alga in Hawaiian coastal zones. Acclimation to high photosynthetically active radiation and ultraviolet irradiance levels especially in tropical regions appears to be an essential mechanism(s) for stress resistance and persistence of intertidal algae. Algal turfs acclimate at microscales in part fostered by their dense stands that create sharp irradiance gradients as well as adjust physiologically to canopy irradiance levels as mechanisms for optimal photosynthetic performance and stress tolerance.  相似文献   

13.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

14.
The effects of shade on benthic calcareous periphyton were tested in a short-hydroperiod oligotrophic subtropical wetland (freshwater Everglades). The experiment was a split-plot design set in three sites with similar environmental characteristics. At each site, eight randomly selected 1-m2 areas were isolated individually in a shade house, which did not spectrally change the incident irradiance but reduced it quantitatively by 0, 30, 50, 60, 70, 80, 90 and 98%. Periphyton mat was sampled monthly under each shade house for a 5 month period while the wetland was flooded. Periphyton was analyzed for thickness, DW, AFDW, chlorophyll a (chl a) and incubated in light and dark BOD bottles at five different irradiances to assess its photosynthesis–irradiance (PI) curve and respiration. The PI curves parameters P max, I k and eventually the photoinhibition slope (β) were determined following non-linear regression analyses. Taxonomic composition and total algal biovolume were determined at the end of the experiment. The periphyton composition did not change with shade but the PI curves were significantly affected by it. I k increased linearly with increasing percent irradiance transmittance (%IT = 1−%shade). P max could be fitted with a PI curve equation as it increased with %IT and leveled off after 10%IT. For each shade level, the PI curve was used to integrate daily photosynthesis for a day of average irradiance. The daily photosynthesis followed a PI curve equation with the same characteristics as P max vs. %IT. Thus, periphyton exhibited a high irradiance plasticity under 0–80% shade but could not keep up the same photosynthetic level at higher shade, causing a decrease in daily GPP at 98% shade levels. The plasticity was linked to an increase in the chl a content per cell in the 60–80% shade, while this increase was not observed at lower shade likely because it was too demanding energetically. Thus, chl a is not a good metric for periphyton biomass assessment across variously shaded habitats. It is also hypothesized that irradiance plasticity is linked to photosynthetic coupling between differently comprised algal layers arranged vertically within periphyton mats that have different PI curves.  相似文献   

15.
Leaves deep in canopies can suddenly be exposed to increased irradiances following e.g. gap formation in forests or pruning in crops. Studies on the acclimation of photosynthesis to increased irradiance have mainly focused on the changes in photosynthetic capacity (Amax), although actual irradiance often remains below saturating level. We investigated the effect of changes in irradiance on the photosynthesis irradiance response and on nitrogen allocation in fully grown leaves of Cucumis sativus. Leaves that fully developed under low (50 µmol m?2 s?1) or moderate (200 µmol m?2 s?1) irradiance were subsequently exposed to, respectively, moderate (LM‐leaves) or low (ML‐leaves) irradiance or kept at constant irradiance level (LL‐ and MM‐leaves). Acclimation of photosynthesis occurred within 7 days with final Amax highest in MM‐leaves, lowest in LL‐leaves and intermediate in ML‐ and LM‐leaves, whereas full acclimation of thylakoid processes underlying photosystem II (PSII) efficiency and non‐photochemical quenching occurred in ML‐ and LM‐leaves. Dark respiration correlated with irradiance level, but not with Amax. Light‐limited quantum efficiency was similar in all leaves. The increase in photosynthesis at moderate irradiance in LM‐leaves was primarily driven by nitrogen import, and nitrogen remained allocated in a similar ratio to Rubisco and bioenergetics, while allocation to light harvesting relatively decreased. A contrary response of nitrogen was associated with the decrease in photosynthesis in ML‐leaves. Net assimilation of LM‐leaves under moderate irradiance remained lower than in MM‐leaves, revealing the importance of photosynthetic acclimation during the leaf developmental phase for crop productivity in scenarios with realistic, moderate fluctuations in irradiance that leaves can be exposed to.  相似文献   

16.
17.
1. We studied the seasonal dynamics of suspended particulate matter in a turbid, large shallow lake during an annual period (2005–06). We relate the patterns of seston concentration (total suspended solids), phytoplankton biomass and water transparency to the seasonal pattern of incident solar radiation (I0). We also report the seasonal trends of phytoplankton primary production (PP) and photosynthesis photoinhibition due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (Iβ and UV50). 2. We first collected empirical evidence that indicated the conditions of light limitation persisted during the study period. We found that the depth‐averaged irradiance estimated for the time of the day of maximum irradiance (Imean–noon) was always lower than the measured onset of light saturation of photosynthesis (Ik). 3. We then contrasted the observations with theoretical expectations based on a light limitation scenario. The observed temporal patterns of seston concentration, both on a volume and area basis, were significantly explained by I0 (R2 = 0.39 and R2 = 0.37 respectively). The vertical diffuse attenuation coefficient (kdPAR) (R2 = 0.55) and the depth‐averaged irradiance (Imean) (R2 = 0.66), significantly increased with the I0; while the irradiance reaching the lake bottom (Iout) significantly decreased with the incident irradiance (R2 = 0.49). However, phytoplankton biovolume maxima were not coincident with the time of the year of maximum irradiance. 4. A significant positive relationship was observed between PP estimated on an area basis and I0 (R2 = 0.51, P < 0.001). In addition, the parameters describing the photosynthetic responses to high irradiances displayed marked seasonal trends. The photosynthesis photoinhibition due to PAR as well as to UV were significantly related to incident solar radiation (PAR: R2 = 0.73; UV: R2 = 0.74). These results suggest adaptation of the phytoplankton community in response to changes in incident solar radiation.  相似文献   

18.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

19.
The photosynthetic performance, pigmentation, and growth of a Halimeda community were studied over a depth gradient on Conch Reef, Florida Keys, USA during summer–fall periods of 5 consecutive years. The physiology and growth of H. tuna (Ellis & Solander) Lamouroux and H. opuntia (L.) Lamouroux on this algal dominated reef were highly variable. Maximum rate of net photosynthesis (Pmax), respiration rate, and quantum efficiency (α) did not differ between populations of either species at 7 versus 21 m, even though the 21‐m site received a 66% lower photon flux density (PFD). Physiological parameters, as well as levels of photosynthetic pigments, varied temporally. Pmax, saturation irradiance, compensation irradiance, and growth were greatest in summer months, whereas α, chl a, chl b, and carotenoid concentrations were elevated each fall. Halimeda tuna growth rates were higher at 7 m compared with 21 m for only two of five growth trials. This may have arisen from variability in light and nutrient availability. Individuals growing at 7 m received a 29% greater PFD in August 2001 than in 1999. In August 1999 and 2001 seawater temperatures were uniform over the 14‐m gradient, whereas in August 2000 cold water regularly intruded upon the 21‐m but not the 7‐m site. These results illustrate the potentially dynamic relationship between nutrients, irradiance, and algal productivity. This suggests the necessity of long‐term monitoring over spatial and temporal gradients to accurately characterize factors that impact productivity.  相似文献   

20.
Interactions between photosynthetic substrate supply and temperature in determining the rate of three respiration components (leaf, belowground and ecosystem respiration) were investigated within three environmentally controlled, Populus deltoides forest bays at Biosphere 2, Arizona. Over 2 months, the atmospheric CO2 concentration and air temperature were manipulated to test the following hypotheses: (1) the responses of the three respiration components to changes in the rate of photosynthesis would differ both in speed and magnitude; (2) the temperature sensitivity of leaf and belowground respiration would increase in response to a rise in substrate availability; and, (3) at the ecosystem level, the ratio of respiration to photosynthesis would be conserved despite week‐to‐week changes in temperature. All three respiration rates responded to the CO2 concentration‐induced changes in photosynthesis. However, the proportional change in the rate of leaf respiration was more than twice that of belowground respiration and, when photosynthesis was reduced, was also more rapid. The results suggest that aboveground respiration plays a key role in the overall response of ecosystem respiration to short‐term changes in canopy photosynthesis. The short‐term temperature sensitivity of leaf respiration, measured within a single night, was found to be affected more by developmental conditions than photosynthetic substrate availability, as the Q10 was lower in leaves that developed at high CO2, irrespective of substrate availability. However, the temperature sensitivity of belowground respiration, calculated between periods of differing air temperature, appeared to be positively correlated with photosynthetic substrate availability. At the ecosystem level, respiration and photosynthesis were positively correlated but the relationship was affected by temperature; for a given rate of daytime photosynthesis, the rate of respiration the following night was greater at 25 than 20°C. This result suggests that net ecosystem exchange did not acclimate to temperature changes lasting up to 3 weeks. Overall, the results of this study demonstrate that the three respiration terms differ in their dependence on photosynthesis and that, short‐ and medium‐term changes in temperature may affect net carbon storage in terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号