首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Histone H1-like amino acid extensions have been described at the amino terminus of Drosophila RpL22 and RpL23a, and at the carboxyl terminus of mosquito ribosomal protein RpS6. An in silico search suggested that RpL23a, but not RpL22, in Anopheles gambiae has an amino-terminal extension. Because low complexity amino acid extensions are not common on eukaryotic ribosomal proteins, and their functions are unknown, we cloned cDNAs encoding RpL23a from Aedes albopictus and Anopheles stephensi mosquito cell lines. RpL23a proteins in Aedes and Anopheles mosquitoes are rich in lysine (approximately 25%), alanine (approximately 21%), and proline (approximately 8%), have a mass of approximately 40 kDa, a pI of 11.4 to 11.5, and contain an N-terminal extension of approximately 260 amino acid residues. The N-terminal extension in mosquito RpL23a is about 100 amino acids longer than that in the Drosophila RpL23a homolog, and contains several repeated amino acid motifs. Analysis of exon-intron organization in the An. gambiae and in D. melanogaster genes suggests that a short first exon encodes a series of 11 amino acid residues conserved in RpL23a proteins from Drosophila, mosquitoes, and the moth, Bombyx mori. The histone H1-like sequence in RpL23a is encoded entirely within the second exon. The C-terminal 126 amino acid residues of the RpL23a protein, encoded by exon 3 in Drosophila, and by exons 3 and 4 in Anopheles gambiae, are well conserved, and correspond to Escherichia coli RpL23 with the addition of the eukaryotic N-terminal nuclear localization sequence. Sequence comparisons indicate that the histone H1-like extensions on mosquito RpS6 and RpL23a have evolved independently of each other, and of histone H1 proteins.  相似文献   

3.
Abdel-Latief M 《PloS one》2007,2(12):e1319
Chemoperception in invertebrates is mediated by a family of G-protein-coupled receptors (GPCR). To date nothing is known about the molecular mechanisms of chemoperception in coleopteran species. Recently the genome of Tribolium castaneum was sequenced for use as a model species for the Coleoptera. Using blast searches analyses of the T. castaneum genome with previously predicted amino acid sequences of insect chemoreceptor genes, a putative chemoreceptor family consisting of 62 gustatory receptors (Grs) and 26 olfactory receptors (Ors) was identified. The receptors have seven transmembrane domains (7TMs) and all belong to the GPCR receptor family. The expression of the T. castaneum chemoreceptor genes was investigated using quantification real- time RT-PCR and in situ whole mount RT-PCR analysis in the antennae, mouth parts, and prolegs of the adults and larvae. All of the predicted TcasGrs were expressed in the labium, maxillae, and prolegs of the adults but TcasGr13, 19, 28, 47, 62, 98, and 61 were not expressed in the prolegs. The TcasOrs were localized only in the antennae and not in any of the beetles gustatory organs with one exception; the TcasOr16 (like DmelOr83b), which was localized in the antennae, labium, and prolegs of the beetles. A group of six TcasGrs that presents a lineage with the sugar receptors subfamily in Drosophila melanogaster were localized in the lacinia of the Tribolium larvae. TcasGr1, 3, and 39, presented an ortholog to CO(2) receptors in D. melanogaster and Anopheles gambiae was recorded. Low expression of almost all of the predicted chemoreceptor genes was observed in the head tissues that contain the brains and suboesophageal ganglion (SOG). These findings demonstrate the identification of a chemoreceptor family in Tribolium, which is evolutionarily related to other insect species.  相似文献   

4.
Host preference and blood feeding are restricted to female mosquitoes. Olfaction plays a major role in host-seeking behaviour, which is likely to be associated with a subset of mosquito olfactory genes. Proteins involved in olfaction include the odorant receptors (ORs) and the odorant-binding proteins (OBPs). OBPs are thought to function as a carrier within insect antennae for transporting odours to the olfactory receptors. Here we report the annotation of 32 genes encoding putative OBPs in the malaria mosquito Anopheles gambiae and their tissue-specific expression in two mosquito species of the Anopheles complex; a highly anthropophilic species An. gambiae sensu stricto and an opportunistic, but more zoophilic species, An. arabiensis. RT-PCR shows that some of the genes are expressed mainly in head tissue and a subset of these show highest expression in female heads. One of the genes (agCP1588) which has not been identified as an OBP, has a high similarity (40%) to the Drosophila pheromone-binding protein 4 (PBPRP4) and is only expressed in heads of both An. gambiae and An. arabiensis, and at higher levels in female heads. Two genes (agCP3071 and agCP15554) are expressed only in female heads and agC15554 also shows higher expression levels in An. gambiae. The expression profiles of the genes in the two members of the Anopheles complex provides the first step towards further molecular analysis of the mosquito olfactory apparatus.  相似文献   

5.
6.
We describe a previously unrecognized protein family from Aedes and Anopheles mosquitoes, here named SGS proteins. There are no SGS homologues in Drosophila or other eukaryotes, but SGS presence in two mosquito genera suggests that the protein family is widespread among mosquitoes. Ae. aegypti aaSGS1 mRNA and protein are salivary gland specific, and protein is localized in the basal lamina covering the anatomical regions that are preferentially invaded by malaria sporozoites. Anti-aaSGS1 antibodies inhibited sporozoite invasion into the salivary glands in vivo, confirming aaSGS1 as a candidate sporozoite receptor. By homology to aaSGS1 we identified the complete complement of four SGS genes in An. gambiae, which were not recognized in the genome annotation. Two An. gambiae SGS genes display salivary gland specific expression like aaSGS1. Bioinformatic analysis predicts that SGS proteins possess heparin-binding domains, and have among the highest density of tyrosine sulphation sites of all An. gambiae proteins. The major sporozoite surface proteins (CS and TRAP) also bind heparin, and interact with sulphoconjugates during liver cell invasion. Thus, we speculate that sporozoite invasion of mosquito salivary glands and subsequently the vertebrate liver may share similar mechanisms based on sulphation. Phylogenomic analysis suggests that an SGS ancestor was involved in a lateral gene transfer.  相似文献   

7.
BACKGROUND: Discrimination between edible and contaminated foods is crucial for the survival of animals. In Drosophila, a family of gustatory receptors (GRs) expressed in taste neurons is thought to mediate the recognition of sugars and bitter compounds, thereby controlling feeding behavior. RESULTS: We have characterized in detail the expression of eight Gr genes in the labial palps, the fly's main taste organ. These genes fall into two distinct groups: seven of them, including Gr66a, are expressed in 22 or fewer taste neurons in each labial palp. Additional experiments show that many of these genes are coexpressed in partially overlapping sets of neurons. In contrast, Gr5a, which encodes a receptor for trehalose, is expressed in a distinct and larger set of taste neurons associated with most chemosensory sensilla, including taste pegs. Mapping the axonal targets of cells expressing Gr66a and Gr5a reveals distinct projection patterns for these two groups of neurons in the brain. Moreover, tetanus toxin-mediated inactivation of Gr66a- or Gr5a-expressing cells shows that these two sets of neurons mediate distinct taste modalities-the perception of bitter (caffeine) and sweet (trehalose) taste, respectively. CONCLUSION: Discrimination between two taste modalities-sweet and bitter-requires specific sets of gustatory receptor neurons that express different Gr genes. Unlike the Drosophila olfactory system, where each neuron expresses a single olfactory receptor gene, taste neurons can express multiple receptors and do so in a complex Gr gene code that is unique for small sets of neurons.  相似文献   

8.
To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed A. aegypti genome, we cloned and characterized 18 A. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the A. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the A. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3 to 36 h post-feeding depending on the gene.  相似文献   

9.
BACKGROUND: Taste is an important sensory modality in most animals. In Drosophila, taste is perceived by gustatory neurons located in sensilla distributed on several different appendages throughout the body of the animal. Here we show that the gustatory receptors are encoded by a family of at least 54 genes (Gr genes), most of which are expressed exclusively in a small subset of taste sensilla located in narrowly defined regions of the fly's body. RESULTS: BLAST searches with the predicted amino acid sequences of 6 7-transmembrane-receptor genes of unknown function and 20 previously identified, putative gustatory receptor genes led to the identification of a large gene family comprising at least 54 genes. We investigated the expression of eight genes by using a Gal4 reporter gene assay and found that five of them were expressed in the gustatory system of the fly. Four genes were expressed in 1%-4% of taste sensilla, located in well-defined regions of the proboscis, the legs, or both. The fifth gene was expressed in about 20% of taste sensilla in all major gustatory organs, including the taste bristles on the anterior wing margin. Axon-tracing experiments demonstrated that neurons expressing a given Gr gene project their axons to a spatially restricted domain of the subesophageal ganglion in the fly brain. CONCLUSIONS: Our findings suggest that each taste sensillum represents a discrete, functional unit expressing at least one Gr receptor and that most Gr genes are expressed in spatially restricted domains of the gustatory system. These observations imply the potential for high taste discrimination of the Drosophila brain.  相似文献   

10.

Background  

Perception of sugars is an invaluable ability for insects which often derive quickly accessible energy from these molecules. A distinctive subfamily of eight proteins within the gustatory receptor (Gr) family has been identified as sugar receptors (SRs) in Drosophila melanogaster (Gr5a, Gr61a, and Gr64a-f). We examined the evolution of these SRs within the 12 available Drosophila genome sequences, as well as three mosquito, two moth, and beetle, bee, and wasp genome sequences.  相似文献   

11.
针对具有选择性蛋白质降解功能的泛素在调控昆虫生长发育过程中的重要作用,探讨埃及伊蚊、冈比亚按蚊和致倦库蚊基因组中polyUBQ基因的有关生物信息。采用电子克隆的方法钓取3种蚊虫基因组中polyUBQ基因序列,分析其特征、分子进化关系、遗传多态性和密码子偏爱性。结果显示,成功获取埃及伊蚊、冈比亚按蚊和致倦库蚊polyUBQ基因序列,命名为Aa-polyUBQ(GenBank登录号:AAGE02005963)、Ag-polyUBQ(ABKP02009650)和Cq-polyUBQ(AAWU01023041),分别编码1 065个、218个和533个氨基酸残基,各具14个、3个和7个泛素单体,Aa-polyUBQ、Ag-polyUBQ和Cq-polyUBQ蛋白二级结构主要元件是延伸带和无规则卷曲,Leu、Ile和Lys是构成3种蛋白的主要氨基酸,亚细胞主要定位于细胞质和细胞核,无前导肽、信号肽和跨膜结构域,除Ag-polyUBQ蛋白外均呈碱性;3种基因序列的同源性较高(83.8%-88.2%)且遗传距离较近(0.129-0.187);检出135个多态位点,共生成3个单倍型,单倍型多样性(Hd=1.000)、平均核苷...  相似文献   

12.
In eukaryotic cells, ribosomal protein S6 (RPS6) is the major phosphorylated protein on the small ribosomal subunit. In the mosquitoes Aedes aegypti and Aedes albopictus, the cDNA encoding RPS6 contains 300 additional nucleotides, relative to the Drosophila homolog. The additional sequence encodes a 100-amino acid, lysine-rich C-terminal extension of the RPS6 protein with 42-49% identity to histone H1 proteins from the chicken and other multicellular organisms. Using mass spectrometry we now show that the C-terminal extension predicted by the cDNA is present on RPS6 protein isolated from ribosomal subunits purified from Ae. albopictus cells. To expand our analysis beyond the genus Aedes, we cloned the rpS6 cDNA from an Anopheles stephensi mosquito cell line. The cDNA also encoded a lysine-rich C-terminal extension. However, in An. stephensi rpS6 the extension was approximately 70 amino acids longer than that in Ae. albopictus, and at the nucleotide level, it most closely resembled histone H1 proteins from the unicellular eukaryotes Leishmania and Chlamydomonas, and the bacterium Bordetella pertussis. To examine how the histone-like C-terminal extension is encoded in the genome, we used PCR-based approaches to obtain the genomic DNA sequence encoding Ae. aegypti and Ae. albopictus rpS6. The sequence encoding the histone-like C-terminal extension was contiguous with upstream coding sequence within a single open reading frame in Exon 3, indicating that the lysine-rich extension in mosquito RPS6 is not the result of an aberrant splicing event. An in silico investigation of the Anopheles gambiae genome based on the cDNA sequence from An. stephensi allowed us to map the An. gambiae gene to chromosome 2R, to deduce its exon-intron organization, and to confirm that Exon 3 encodes a C-terminal histone-like extension. Because the C-terminal extension is absent from Drosophila melanogaster, we examined a partial cDNA clone from a Psychodid fly, which shares a relatively recent common ancestor with the mosquitoes. The absence of the C-terminal extension in the Psychodid rpS6 cDNA suggests that the unusual RPS6 structure is restricted to a relatively small group of flies in the Nematocera.  相似文献   

13.
Apoptosis has been extensively studied in Drosophila by both biochemical and genetic approaches, but there is a lack of knowledge about the mechanisms of apoptosis regulation in other insects. In mosquitoes, apoptosis occurs during Plasmodium and arbovirus infection in the midgut, suggesting that apoptosis plays a role in mosquito innate immunity. We searched the Aedes aegypti genome for apoptosis-related genes using Drosophila and Anopheles gambiae protein sequences as queries. In this study we have identified eleven caspases, three inhibitor of apoptosis (IAP) proteins, a previously unreported IAP antagonist, and orthologs of Drosophila Ark, Dnr1, and BG4 (also called dFadd). While most of these genes have been previously annotated, we have improved the annotation of several of them, and we also report the discovery of four previously unannotated apoptosis-related genes. We examined the developmental expression profile of these genes in Ae. aegypti larvae, pupae and adults, and we also studied the function of a novel IAP antagonist, IMP. Expression of IMP in mosquito cells caused apoptosis, indicating that it is a functional pro-death protein. Further characterization of these genes will help elucidate the molecular mechanisms of apoptosis regulation in Ae. aegypti.  相似文献   

14.
Recent years have seen long-awaited progress in understanding of the molecular mechanisms of taste perception in insects. The breakthrough came in the early 2000 with the identification of a novel family of candidate gustatory receptor (Gr) genes in the first release of the Drosophila melanogaster genome sequence. The 60 Gr genes are expressed in the subsets of gustatory neurons in the fly's taste organs and, without exception, encode heptahelical G protein-coupled receptors (GPCRs). Here I review our current knowledge about Gr genes and their products focusing on the newly emerging information regarding the function of the Gr-encoded proteins.  相似文献   

15.
~~Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis1. Curtis, C. F., Introduction 1: An overview of mosquito biology, behaviour and importance, in Olfaction in Mosquito-Host Interactions (eds. Bock, G. R.. Cardew, G.), New York: Wiley, 1996, 3-7. 2. Nighom, A., Hildebrand. J. G.. Dissecting the molecular mechanisms of olfaction in a malaria-vector mosquito, PNAS, 2002, 99(3): 1113-…  相似文献   

16.
《Fly》2013,7(4):189-196
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly's major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca2+ imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.  相似文献   

17.
In Drosophila, the gustatory receptor (Gr) gene family contains 60 family members that encode 68 proteins through alternative splicing. Some gustatory receptors (Grs) are involved in the sensing of sugars, bitter substrates, CO2, pheromones, and light. Here, we systematically examined the expression of all 68 Grs in abdominal neurons which project to the abdominal ganglion of the central nervous system using the GAL4/UAS system. Gr gene expression patterns have been successfully analyzed in previous studies by using the GAL4/UAS system to drive reporter gene expression. Interestingly, 21 Gr-GAL4 drivers showed abdominal ganglion projection, and 18 of these 21 Gr-GAL4 drivers labeled multidendritic neurons of the abdominal wall. 4 drivers also labeled neuronal processes innervating the reproductive organs. The peripheral expression of Gr-GAL4 drivers in abdominal multidendritic neurons or neurons innervating the reproductive organs suggests that these Grs have atypical sensory functions in these organs not limited to conventional taste sensing.  相似文献   

18.
19.
Low volatility, lipid-like cuticular hydrocarbon pheromones produced by Drosophila melanogaster females play an essential role in triggering and modulating mating behavior, but the chemosensory mechanisms involved remain poorly understood. Recently, we showed that the CheB42a protein, which is expressed in only 10 pheromone-sensing taste hairs on the front legs of males, modulates progression to late stages of male courtship behavior in response to female-specific cuticular hydrocarbons. Here we report that expression of all 12 genes in the CheB gene family is predominantly or exclusively gustatory-specific, and occurs in many different, often non-overlapping patterns. Only the Gr family of gustatory receptor genes displays a comparable variety of gustatory-specific expression patterns. Unlike Grs, however, expression of all but one CheB gene is sexually dimorphic. Like CheB42a, other CheBs may therefore function specifically in gustatory perception of pheromones. We also show that CheBs belong to the ML superfamily of lipid-binding proteins, and are most similar to human GM2-activator protein (GM2-AP). In particular, GM2-AP residues involved in ligand binding are conserved in CheBs but not in other ML proteins. Finally, CheB42a is specifically secreted into the inner lumen of pheromone-sensing taste hairs, where pheromones interact with membrane-bound receptors. We propose that CheB proteins interact directly with lipid-like Drosophila pheromones and modulate their detection by the gustatory signal transduction machinery. Furthermore, as loss of GM2-AP in Tay-Sachs disease prevents degradation of GM2 gangliosides and results in neurodegeneration, the function of CheBs in pheromone response may involve biochemical mechanisms critical for lipid metabolism in human neurons.  相似文献   

20.
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly''s major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca2+ imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号