首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sensitivity of meiotic cells to DNA damaging agents is little understood. We have demonstrated that the meiotic pachytene nuclei in the Caenorhabditis elegans gonad are hyper-resistant to X-ray irradiation, but not to UV irradiation, whereas the early embryonic cells after fertilization and the full grown oocytes are not. The Ce-rdh-1 gene [RAD51, DMC1 (LIM15), homolog 1 or Ce-rad-51], which is essential for the meiotic recombination, is the only bacterial recA-like gene in the nematode genome, and is strongly expressed in the meiotic cells. Following silencing of the Ce-rdh-1 gene by RNA interference, the meiotic cells become more sensitive to X-ray irradiation than the early embryonic cells. This is the first report that meiotic cells are hyper-resistant to DNA strand breaks due to the high level of expression of the enzyme(s) involved in meiotic homologous recombination.  相似文献   

2.
The signal for sex determination in the nematode Caenorhabditis elegans is the ratio between the number of X chromosomes and the number of sets of autosomes (the X/A ratio). Animals with an X/A ratio of 0.67 (a triploid with two X chromosomes) or less are males. Animals with an X/A ratio of 0.75 or more are hermaphrodites. Thus, diploid males have one X chromosome and diploid hermaphrodites have two X chromosomes. However, the difference in X-chromosome number between the sexes is not reflected in general levels of X-linked gene expression because of the phenomenon of dosage compensation. In dosage compensation, X-linked gene expression appears to be 'turned down' in 2X animals to the 1X level of expression. An intriguing and unexplained finding is that mutations and X-chromosome duplications that elevate X-linked gene expression also feminize triploid males. One way that this relationship between sex determination and X-linked gene expression may be operating is discussed.  相似文献   

3.
Global analysis of dauer gene expression in Caenorhabditis elegans   总被引:7,自引:0,他引:7  
  相似文献   

4.
5.
By alignment to the carboxy-terminal-deduced aa sequence of human cytomegalovirus glycoprotein B (gB), conserved hexameric aa motifs with putative function for localization in the inner nuclear membrane (INM) were identified in the nucleoplasmic tails of herpes simplex virus type 1 gB and of the cellular lamin B receptor. Fusion of the respective hexamers to CD8 as a reporter redirected transport of the chimeras into the INM, suggesting their functioning as modular signal motifs. Consecutive experiments showed that the three-residue motif RxR represents a consensus sequence which is sufficient for localization of the CD8 reporter in the INM.  相似文献   

6.
Mutations in the Caenorhabditis elegans unc-84 gene cause defects in nuclear migration and anchoring. We show that endogenous UNC-84 protein colocalizes with Ce-lamin at the nuclear envelope and that the envelope localization of UNC-84 requires Ce-lamin. We also show that during mitosis, UNC-84 remains at the nuclear periphery until late anaphase, similar to known inner nuclear membrane proteins. UNC-84 protein is first detected at the 26-cell stage and thereafter is present in most cells during development and in adults. UNC-84 is properly expressed in unc-83 and anc-1 lines, which have phenotypes similar to unc-84, suggesting that neither the expression nor nuclear envelope localization of UNC-84 depends on UNC-83 or ANC-1 proteins. The envelope localization of Ce-lamin, Ce-emerin, Ce-MAN1, and nucleoporins are unaffected by the loss of UNC-84. UNC-84 is not required for centrosome attachment to the nucleus because centrosomes are localized normally in unc-84 hyp7 cells despite a nuclear migration defect. Models for UNC-84 localization are discussed.  相似文献   

7.
Using DNA sequences 5′ to open reading frames, we have constructed green fluorescent protein (GFP) fusions and generated spatial and temporal tissue expression profiles for 1,886 specific genes in the nematode Caenorhabditis elegans. This effort encompasses about 10% of all genes identified in this organism. GFP-expressing wild-type animals were analyzed at each stage of development from embryo to adult. We have identified 5′ DNA regions regulating expression at all developmental stages and in 38 different cell and tissue types in this organism. Among the regulatory regions identified are sequences that regulate expression in all cells, in specific tissues, in combinations of tissues, and in single cells. Most of the genes we have examined in C. elegans have human orthologs. All the images and expression pattern data generated by this project are available at WormAtlas (http://gfpweb.aecom.yu.edu/index) and through WormBase (http://www.wormbase.org).  相似文献   

8.
Transgenic Caenorhabditis elegans expressing jellyfish Green Fluorescent Protein under the control of the promoter for the inducible small heat shock protein gene hsp-16-2 have been constructed. Transgene expression parallels that of the endogenous hsp-16 gene, and, therefore, allows direct visualization, localization, and quantitation of hsp-16 expression in living animals. In addition to the expected upregulation by heat shock, we show that a variety of stresses, including exposure to superoxide-generating redox-cycling quinones and the expression of the human beta amyloid peptide, specifically induce the reporter transgene. The quinone induction is suppressed by coincubation with L-ascorbate. The ability to directly observe the stress response in living animals significantly simplifies the identification of both exogenous treatments and genetic alterations that modulate stress response, and possibly life span, in C. elegans.  相似文献   

9.
10.
Electrophysiology of the nematode Caenorhabditis elegans has the potential to bridge the wealth of information on the molecular biology and anatomy of this organism with the responses of selected cells and cellular neural networks associated with a behavioral response. In this paper we report that the nonlinear optical phenomenon of second harmonic generation (SHG) can be detected using green fluorescent protein (GFP) chimeras expressed in selected cells of living animals. Alterations in the SHG signal as a result of receptor ligand interactions and mechanical stimulation of the mechanosensory cells indicate that this signal is very sensitive to membrane potential. The results suggest that this approach to membrane potential measurements in C. elegans and in other biological systems could effectively couple data on selective locations within specific cells with functional responses that are associated with behavioral and sensory processes.  相似文献   

11.
Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.  相似文献   

12.
13.
14.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

15.
16.
We examined the expression of a Caenorhabditis elegans (C. elegans) elav-like gene, which we designated elr-1. The elr-1 gene encodes a predicted 456-amino-acid protein containing three putative RNA-binding domains and belongs to the ELAV family, which is functionally involved in neuronal differentiation. Northern blot analysis suggested that the levels of elr-1 mRNA are regulated developmentally. A elr-1::gfp reporter gene under the control of the elr-1 promoter was expressed specifically in the ring ganglia near the nerve ring, the ventral nerve cord (VNC), and the pre-anal and lumbar ganglia. In the VNC, GFP-positive cells were shown to be acetylcholine-producing motor neurons which increased in number as development proceeded, suggesting that elr-1 is expressed in mature neurons. Ectopic expression of ELR-1 protein at the L4 larval and adult stages, but not earlier stages, caused irreversible death, accompanied by uncoordinated movement (Unc), clear (Clr), and egg-laying defective (Egl) phenotypes, which are often observed in mutants with neuronal defects. These results suggest that ELR-1 may have important functions in specific mature neurons in C. elegans.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号