首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Synthesis of (R)-2-trimethylsilyl-2-hydroxyl-propionitrile via asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed by (R)-hydroxynitrile lyase from Prunus japonica seed meal was successfully carried out for the first time. The optimal volume ratio of aqueous to organic phase, buffer pH value and reaction temperature were 15% (v/v), 5.0 and 30°C, respectively, under which both substrate conversion and product enantiomeric excess (ee) were 99%. Silicon atom in the substrate showed great effect on the reaction. Acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus japonica than its carbon analogue.  相似文献   

2.
Li N  Zong MH  Liu C  Peng HS  Wu HC 《Biotechnology letters》2003,25(3):219-222
Optically active 2-trimethylsilyl-2-hydroxyl-ethylcyanide was prepared by enzymatic enantioselective transcyanation of acetyltrimethylsilane with acetone cyanohydrin in a biphasic system at 35°C and pH 5. (R)-Oxynitrilase from apple seed meal was the best among all the enzymes explored and diisopropyl ether was the most suitable organic phase. Acetyltrimethylsilane was a better substrate of the enzyme than its carbon analogue. The substrate conversion and product enantiomeric excess of 2-trimethylsilyl-2-hydroxyl-ethylcyanide were >99% and >99%, respectively.  相似文献   

3.
Synthesis of (R)-2-trimethylsilyl-2-hydroxyl-propionitrile via asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed by (R)-hydroxynitrile lyase from Prunus japonica seed meal was successfully carried out for the first time. The optimal volume ratio of aqueous to organic phase, buffer pH value and reaction temperature were 15% (v/v), 5.0 and 30°C, respectively, under which both substrate conversion and product enantiomeric excess (ee) were 99%. Silicon atom in the substrate showed great effect on the reaction. Acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus japonica than its carbon analogue.  相似文献   

4.
Hydroxynitrile Lyase Catalysis in Ionic Liquid-containing Systems   总被引:1,自引:0,他引:1  
Lou WY  Xu R  Zong MH 《Biotechnology letters》2005,27(18):1387-1390
The cleavage of mandelonitrile catalysed by hydroxynitrile lyases (HNL) from Prunus amygdalus (PaHNL) and Manihot esculenta (MeHNL) proceeded more rapidly in monophasic aqueous media containing 1-propyl-3-methylimidazolium tetrafluoroborate [C4MIm][BF4] than in media containing acetonitrile or THF. Both HNLs were much more thermostable in [C4MIm][BF4] than in acetonitrile or THF. The addition of each of the four ionic liquids 1-butyl-, 1-pentyl- and 1-hexyl-3-methylimidazolium tetrafluoroborates at 2–6% (v/v in the aqueous phase) increased both the enzyme activity and the product e.e. in the PaHNL-catalysed transcyanation in an aqueous/DIPE biphasic system. However, MeHNL was inactivated by the ionic liquids, as indicated by the decreased reaction rate, substrate conversion and product e.e.  相似文献   

5.
Alcaligenes sp. MTCC 10674 was isolated as acetone cyanohydrin hydrolyzing bacterium from soil of orchid gardens of Himachal Pradesh. Acetone cyanohydrin hydrolyzing activity of this organism comprised nitrile hydratase and amidase activities. It exhibited higher substrate specificity towards aliphatic hydroxynitrile (acetone cyanohydrin) in comparison to arylaliphatic hydroxynitrile. Isobutyronitrile (40 mM) acted as a carbon source as well as inducer for growth of Alcaligenes sp. MTCC 10674 and expression of acetone cyanohydrin hydrolyzing activity. Optimization of culture condition using response surface methodology increased acetone cyanohydrin hydrolyzing activity by 1.3-fold, while inducer mediation approach increased the activity by 1.2-fold. The half life of this enzyme was 25 h at 15 °C. V max and K m value for acetone cyanohydrin hydrolyzing enzyme was 0.71 μmol mg?1 min?1 and 14.3 mM, when acetone cyanohydrin was used as substrate. Acetone cyanohydrin hydrolyzing enzyme encountered product inhibition and IC50 and K i value were calculated to be 28 and 10.2 mM, respectively, when product α-hydroxyisobutyric acid was added in the reaction. Under optimized reaction conditions at 40 ml fed batch scale, 3 mg dcw ml ? resting cells of Alcaligenes sp. MTCC 10674 fully converted 0.33 M acetone cyanohydrin into α-hydroxyisobutyric acid (1.02 g) in 6 h 40 min. The characterization of acetone cyanohydrins hydrolyzing activity revealed that it comprises bienzymatic nitrile hydrolyzing system, i.e. nitrile hydratase and amidase for the production of α-hydroxyisobutyric acid from acetone cyanohydrin and maximum 70 % yield is being reported for the first time.  相似文献   

6.
Optically active form of α-cyano-3-phenoxybenzyl alcohol (CPBA), building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin-catalyzed transcyanation between m-phenoxybenzaldehyde and acetone cyanohydrin, and lipase-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through a screening of enzymes, Alcaligenes sp. lipase showed the highest activity and the conversion exceeded 50%. Effects of solvents and temperatures on this reaction were studied. Among four kinds of solvent, diisopropyl ether was a best choice. The optimal temperature was 50 °C. Although the external diffusion limitation could be excluded by raising the rotational speed, internal diffusion could not be ignored, since the enzyme was an immobilized one on the particles with a considerably large diameter. The e.e. values of CPBA ester were measured by polarimeter and NMR.  相似文献   

7.
The application of unusual high pH-values within enzymatic cyanohydrin synthesis has been investigated. Usually enzymatic cyanohydrin synthesis in two-phase systems requires low pH-values within the aqueous phase to suppress the non-enzymatic side reaction. In contrast, we investigated the usage of pH-values above pH 6 by using the highly enantioselective (S)-selective hydroxynitrile lyase from Manihot esculenta. With these unusual reaction conditions also the unfavorable substrate 3-phenoxy-benzaldehyde can be converted by the wild type enzyme with excellent conversion and enantiomeric excess yielding pure (S)-3-phenoxy-benzaldehyde cyanohydrin with an enantiomeric excess of 97%. Although the variant MeHNL–W128A shows a higher activity with respect to this reaction, the enantioselectivity was reduced (85% e.e.(S)). Additionally, a new continuous spectroscopic cyanohydrin assay monitoring the formation of 3-phenoxy-benzaldehyde cyanohydrin was developed. Dedicated to Prof. Dr. Christian Wandrey on the occasion of his 65th birthday.  相似文献   

8.
Overexpression and production of the high concentration of hydroxynitrile lyase from cassava (Manihot esculenta (MeHNL, EC 4.1.2.39)) were investigated. Hydroxynitrile lyase is a useful enzyme for the production of optically active cyanohydrin compounds. The production of MeHNL was increased by changing the rare codons of the original sequence of cassava MeHNL. However, most of the produced MeHNL was in the insoluble form. In order to increase the solubility of MeHNL, the effects of the cultivation temperature were investigated. When the cultivation temperature was reduced, the cell yield and the ratio of soluble MeHNL increased significantly. The enzyme activity and yield at low-temperature cultures (17 °C) were 850 times higher than those obtained at the optimum growth temperature of 37 °C. The rate of MeHNL production in the present study was calculated as 3,000 unit/h. Low-temperature cultivation was very effective in improving the productivity of the active form of MeHNL. Unlike the temperature-shift method, low-temperature cultivation has more potential for the large-scale production of MeHNL for the optically active cyanohydrin production. An erratum to this article can be found at  相似文献   

9.
Tryptophan 128 of hydroxynitrile lyase of Manihot esculenta (MeHNL) covers a significant part of a hydrophobic channel that gives access to the active site of the enzyme. This residue was therefore substituted in the mutant MeHNL-W128A by alanine to study its importance for the substrate specificity of the enzyme. Wild-type MeHNL and MeHNL-W128A showed comparable activity on the natural substrate acetone cyanohydrin (53 and 40 U/mg, respectively). However, the specific activities of MeHNL-W128A for the unnatural substrates mandelonitrile and 4-hydroxymandelonitrile are increased 9-fold and approximately 450-fold, respectively, compared with the wild-type MeHNL. The crystal structure of the MeHNL-W128A substrate-free form at 2.1 A resolution indicates that the W128A substitution has significantly enlarged the active-site channel entrance, and thereby explains the observed changes in substrate specificity for bulky substrates. Surprisingly, the MeHNL-W128A--4-hydroxybenzaldehyde complex structure at 2.1 A resolution shows the presence of two hydroxybenzaldehyde molecules in a sandwich type arrangement in the active site with an additional hydrogen bridge to the reacting center.  相似文献   

10.
(R)-Mandelonitrile was successfully synthesized by an enzymatic transcyanation reaction of benzaldehyde and acetone cyanohydrin catalyzed by a hydroxynitrile lyase from Eriobotrya japonica (EjHNL) in an aqueous-organic biphasic system. The effects of pH, temperature, organic solvent, substrate concentration and enzyme concentration on the initial activity and enantioselectivity of the enzyme were studied. Both pH and temperature had a large effect on the initial velocity and enantiomeric excess (e.e.) of the product, (R)-mandelonitrile. High enantiomeric purity of the product was observed at low pH and temperature because the non-enzymatic reaction producing racemates of mandelonitrile was almost suppressed. The optimum pH and temperature to obtain high e.e. were pH 4.0 and 10 °C, respectively. Surprisingly, the organic solvents had a significant influence on the initial velocity of the reaction but less influence on the enantiomeric purity of product. The EjHNL was very stable in ethyl acetate, diethyl ether, methyl-t-butyl ether, diisopropyl ether, dibutyl ether and hexane for 12 h. The best solvent for the highest initial velocity and e.e. was diethyl ether with an optimum aqueous phase content of 50% (v/v). The initial reaction rate increase as the aqueous phase content rose, but when the content was more than 50%, a reduction of e.e. was observed. Increasing the concentration of the substrates accelerated the initial velocity, but caused a slight decrease in the e.e. of the product. Under the optimized conditions, the conversion and e.e. of (R)-mandelonitrile for 3 h were 40 and 99%, respectively. The aqueous phase containing the enzyme also showed considerably efficient reusability for 4 batch reactions.  相似文献   

11.
The hydroxynitrile lyases (HNLs) from Hevea brasiliensis (HbHNL) and from Manihot esculenta (MeHNL) are both members of the alpha/beta-hydrolase superfamily. Mechanistic proposals have been put forward in the past for both enzymes; they differed with respect to the role of the active-site lysine residue for which a catalytic function was claimed for the Hevea enzyme but denied for the Manihot enzyme. We applied a freeze-quench method to prepare crystals of the complex of HbHNL with the biological substrate acetone cyanohydrin and determined its three-dimensional structure. Site-directed mutagenesis was used to prepare the mutant K236L, which is inactive although its three-dimensional structure is similar to the wild-type enzyme. However, the structure of the K236L-acetone cyanohydrin complex shows the substrate in a different orientation from the wild-type complex. Finite difference Poisson-Boltzmann calculations show that in the absence of Lys(236) the catalytic base His(235) would be protonated at neutral pH. All of this suggests that Lys(236) is instrumental for catalysis in several ways, i.e. by correctly positioning the substrate, by stabilizing the negatively charged reaction product CN(-), and by modulating the basicity of the catalytic base. These data complete the elucidation of the reaction mechanism of alpha/beta-hydrolase HNLs, in which the catalytic triad acts as a general base rather than as a nucleophile; proton abstraction from the substrate is performed by the serine, and reprotonation of the product cyanide is performed by the histidine residues. Together with a threonine side chain, the active-site serine and lysine are also involved in substrate binding.  相似文献   

12.
The ability to produce (R)- or (S)-β-phenylalanine ethyl ester (3-amino-3-phenylpropionic acid ethyl ester, BPAE) from racemic BPAE through stereoselective hydrolysis was screened for in BPAE-assimilating microorganisms. Sphingobacterium sp. 238C5 and Arthrobacter sp. 219D2 were found to be potential catalysts for (R)- and (S)-BPAE production, respectively. On a 24-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Sphingobacterium sp. 238C5 as the catalyst, 1.15% (w/v) (R)-BPAE (60 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 46%. On a 48-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Arthrobacter sp. 219D2 as the catalyst, 0.87% (w/v) (S)-BPAE (45 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 35%. The enzyme stereoselectively hydrolyzing (S)-BPAE was purified to homogeneity from the cell-free extract of Sphingobacterium sp. 238C5. The enzyme was a monomeric protein with a molecular mass of about 42,000. The enzyme catalyzed hydrolysis of β-phenylalanine esters, while the common aliphatic and aromatic carboxylate esters were not catalyzed.  相似文献   

13.
The (S)-selective hydroxynitrile lyase from Hevea brasiliensis (HbHNL) catalyzes the trans-cyanohydrin reaction (transcyanation). The equilibrium of this two-step reaction sequence is not favorable unless a large excess of acetone cyanohydrin (1) is used. Therefore, the coupling of this reaction with a follow-up reaction was investigated. It was established that the trans-cyanohydrin reaction could be performed in organic media, making it possible to couple it with a lipase-catalyzed acylation. Candida antarctica lipase B (CAL-B) shows a high selectivity (E=100) for (S)-mandelonitrile (4) and is, therefore, the ideal candidate for this type of multi-step one-pot reaction.  相似文献   

14.
The synthesis of optically active (R)-2-trimethylsilyl-2-hydroxyl-ethylcyanide by asymmetric trans-cyanation of acetyltrimethylsilane with acetone cyanohydrin in a biphasic system was achieved using (R)-oxynitrilase from loquat seed meal. Diisopropyl ether was the most suitable organic phase among the organic solvents examined. The optimal concentration of acetyltrimethylsilane, concentration of crude enzyme, volume ratio of the aqueous to the organic phase, temperature and the buffer pH value were 14 mM, 61.4 U ml-1, 13% (v/v), 30 °C and 4, respectively. The substrate conversion and the product enantiomeric excess were 95% and 98% under the optimized conditions. Acetyltrimethylsilane was a better substrate of the enzyme than its carbon counterpart. Revisions requested 24 August 2004; Revisions received 12 November 2004  相似文献   

15.
The structure and function of hydroxynitrile lyase from Manihot esculenta (MeHNL) have been analyzed by X-ray crystallography and site-directed mutagenesis. The crystal structure of the MeHNL-S80A mutant enzyme has been refined to an R-factor of 18.0% against diffraction data to 2.1-A resolution. The three-dimensional structure of the MeHNL-S80A-acetone cyanohydrin complex was determined at 2.2-A resolution and refined to an R-factor of 18.7%. Thr11 and Cys81 involved in substrate binding have been substituted by Ala in site-directed mutagenesis. The kinetic measurements of these mutant enzymes are presented. Combined with structural data, the results support a mechanism for cyanogenesis in which His236 as a general base abstracts a proton from Ser80, thereby allowing proton transfer from the hydroxyl group of acetone cyanohydrin to Ser80. The His236 imidazolium cation then facilitates the leaving of the nitrile group by proton donating.  相似文献   

16.
In this study, (R)-3-fluoroalanine was asymmetrically synthesized from 3-fluoropyruvate (F-pyruvate) and (S)-α-methylbenzylamine (MBA) using recombinant ω-transaminase (TA) from Vibrio fluvialis JS17. The reaction was severely inhibited by acetophenone (deaminated product of α-MBA). In the presence of 5 mM acetophenone, the reactivity of the enzyme towards F-pyruvate decreased by 78%. To overcome the product inhibition by acetophenone, a biphasic reaction was successfully used. The conversion of F-pyruvate into (R)-3-fluoroalanine (enatiomeric exess (e.e.) > 99%) was about 95% in the biphasic system (75 mM F-pyruvate, 100 mM (S)-α-MBA, and 3.0 U/mL), whereas 31% was obtained without product extraction. The use of racemic α-MBA as an amino donor instead of (S)-α-MBA can reduce the reaction cost and also produce chiral amines through kinetic resolution. When the kinetic resolution of racemic α-MBA (40 mM) was carried out with F-pyruvate (30 mM) and ω-TA (3.0 U/mL) in 100 mM phosphate buffer (pH 7.0), the e.e. of (R)-α-MBA reached 98.4% with 52.2% conversion for 10 h and 21 mM (R)-3-fluoroalanine was produced with 70% conversion and an e.e. > 99%.  相似文献   

17.
An efficient simultaneous synthesis of enantiopure (S)-amino acids and chiral (R)-amines was achieved using α/ω-aminotransferase (α/ω-AT) coupling reaction with two-liquid phase system. As, among the enzyme components in the α/ω-AT coupling reaction systems, only ω-AT is severely hampered by product inhibition by ketone product, the coupled reaction cannot be carried out above 60 mM substrates. To overcome this problem, a two-liquid phase reaction was chosen, where dioctylphthalate was selected as the solvent based upon biocompatibility, partition coefficient and effect on enzyme activity. Using 100 mM of substrates, the AroAT/ω-AT and the AlaAT/ω-AT coupling reactions asymmetrically synthesized (S)-phenylalanine and (S)-2-aminobutyrate with 93% (>99% eeS) and 95% (>99% eeS) of conversion yield, and resolved the racemic α-methylbenzylamine with 56% (95% eeR) and 54% (96% eeR) of conversion yield, respectively. Moreover, using 300 mM of 2-oxobutyrate and 300 mM of racemic α-methylbenzylamine as substrates, the coupling reactions yielded 276 mM of (S)-2-aminobutyrate (>99% ee) and 144 mM of (R)-α-methylbenzylamine (>96% ee) in 9 h. Here, most of the reactions take place in the aqueous phase, and acetophenone mainly moved to the organic phase according to its partition coefficient.  相似文献   

18.
A new process for (6S)-tetrahydrofolate production from dihydrofolate was designed that used dihydrofolate reductase and an NADPH regeneration system. Glucose dehydrogenase from Gluconobacter scleroides KY3613 was used for recycling of the cofactor. The reaction mixture contained 200 mM dihydrofolate, 220mM glucose, 2mM NADP, 14.4U/ml dihydrofolate reductase, and 14.4U/ml Glucose dehydrogenase, and the reaction was complete after incubation at pH 8.0, and 40°C for 2.5 hr. With (6S)-tetrahydrofolate as the starting material, l-leucovorin was synthesized via a methenyl derivative. The purity of the l-leucovorin was 100%, and its diastereomeric purity was >99.5% d.e. as the (6S)-form.  相似文献   

19.
A cytochrome P450 monooxygenase (P450SMO) from Rhodococcus sp. can catalyze asymmetric oxygenation of sulfides to S-sulfoxides. However, P450SMO-catalyzed biotransformations require a constant supply of NAD(P)H, the expense of which constitutes a great hindrance for this enzyme application. In this study, we investigated the asymmetric oxygenation of sulfide to S-sulfoxide using E. coli cells, which co-express both the P450SMO gene from Rhodococcus sp. and the glucose dehydrogenase (GDH) gene from Bacillus subtilis, as a catalyst. The results showed that the catalytic performance of co-expression systems was markedly improved compared to the system lacking GDH. When using recombinant E. coli BL21 (pET28a-P450-GDH) whole cell as a biocatalyst, NADPH was efficiently regenerated when glucose was supplemented in the reaction system. A total conversion of 100% was achieved within 12 h with 2 mM p-chlorothioanisole substrate, affording 317.3 mg/L S-sulfoxide obtained. When the initial sulfide concentration was increased to 5 mM, the substrate conversion was also increased nearly fivefold: S-sulfoxide amounted to 2.5 mM (396.6 mg/L) and the ee value of sulfoxide product exceeded 98%. In this system, the effects of glucose concentration and substrate concentration were further investigated for efficient biotransformation. This system is highly advantageous for the synthesis of optically pure S-sulfoxide.  相似文献   

20.
A membrane enzyme reactor with simultaneous separation was investigated. Enzymes, urease and aspartase, were immobilized by a porous polytetrafluoroethylene membrane. Electrical field was applied in the medium while the reaction was carried out. Products with electrical charge could be separated through the membrane from the reaction medium as they were formed. Reaction behavior was analyzed by a simple model considering both pore-migration and reaction in the skelton of the membrane. According to the analysis the inherent reaction rate of the immobilized enzymes decreases significantly. This is probably caused by the structural variation of enzymes. For the case of urease, the change of pH inside the membrane may also cause the decrease of the reaction rate. The model analysis showed that the enzyme content in the membrane and the residence time of the substrate in the membrane governed overall extent of reaction.List of Symbols e g (dm3)–1 enzyme concentration in the membrane - L cm membrane thickness - K m mM Michaelis constant - Rate mmol · min–1 · g–1 rate of product formation per unit weight of enzyme - S mM substrate concentration - S in mM inlet substrate concentration - S out mM outlet substrate concentration - u cm · min–1 migration rate - V V voltage between the electrodes - V m mmol · min–1 · g–1 maximum reaction rate - X conversion - z cm distance from the surface inside the membrane - void fraction of the porous membrane - tortuosity of the membrane - min space time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号