首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
SYNOPSIS. Paramecium aurelia , stock 299 (symbiote-free) was cultivated in a synthetic medium consisting of amino acids, vitamins, purine and pyrimidine derivatives, fatty acids, stigmasterol, sodium acetate and salts. The medium supported the continued growth of this stock in serial subculture. Populations up to 17,000 organisms/ml were obtained in 9 or 10 days in the medium supplemented with a phospholipid. Synthetic 1-oleoyl-2-stearoyl-dl-phosphatidyl serine, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine and cephalin were comparable in growth-promoting activity. The nutritional need for each of the components of the medium was examined. The following were determined to be essential nutrilites for P. aurelia : arginine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, tyrosine, valine, folic acid, nicotinamide, calcium pantothenate, pyridoxal, riboflavin, thiamine, DL-6-thioctic acid, guanosine, uridine (or cytidine), oleic acid, stigmasterol, calcium and magnesium. Serine replaced glycine for growth in the presence of thymidine. In the absence of thymidine, comparatively high levels of folic acid were required for optimal growth. Sodium acetate did not replace DL-6-thioctic acid. Populations were reduced in the absence of the non-essential amino acids, alanine, asparagine, aspartic acid and glutamic acid. These were restored to optimal levels by the addition of sodium acetate to the medium. Pyruvate was about as effective as acetate in this respect; glucose and certain other carbohydrates were not.  相似文献   

2.
Summary The amino acid requirements of strain L-M mouse cells grown in a chemically defined medium (2×Eagle) containing only the 13 essential amino acids (EAA) were investigated. Medium and acid hydrolysate samples were analyzed for amino acid content by the method of ion exchange chromatography. The extent of utilization of the EAA differed;e.g. after 120 hr of cell growth without medium change, glutamine was exhausted from the medium; methionine, leucine, isoleucine, cystine, arginine, and valine were depleted 60 to 80%; other EAA were used to lesser extents. Although the EAA were used in excess of their requirements for protein synthesis, a correlation could generally be made between utilization and protein amino acid composition. Glutamine appeared to be, a growth-limiting factor. Use of U-14C-labeled glutamine indicated that over one-half of the metabolized glutamine was converted to carbon dioxide, 17% to cell material, and 15% was extracted from the amino acid pools. Nonessential amino acids (NEAA), viz. alanine, aspartic acid, glutamic acid, glycine, proline, and serine, were released into the medium during growth, and some were reutilized. Exogenous provision of these did not improve cell growth. In contrast to the other NEAA, only serine showed net utilization when provided exogenously. When glutamic acid largely replaced the glutamine in the medium, it exerted a sparing effect on the glutamine requirement for protein synthesis. Suggestions are given for the improvement of Eagle medium for cell growth. Supported by Research Grants CA 03720 and CA 11802 from the National Institutes of Health. Predoctoral, fellow supported, by Grant F01-GM-42156-02 from the National Institutes of Health.  相似文献   

3.
When any of the ten “rat essential” amino acids was omitted singly from a fully-defined synthetic dietary medium, newly-hatched Culex pipiens larvae were unable to develop to the second instar. With proline omitted, development was greatly retarded and survival to the adult stage reduced. Without aspargine (but not aspartic acid) growth and development ceased in most individuals before larval-pupal ecdysis, and no adults were obtained. These twelve amino acids are considered nutritionally essential for this mosquito. With glycine omitted singly, development was markedly retarded, but survival to the adult stage was not affected; thus this amino acid is required for good growth, but these experiments do not demonstrate it as essential. Single omission of alanine, aspartic acid, cysteine, glutamic acid or amide, serine or tyrosine had virtually no effect on development and they are therefore considered nutritionally non-essential. With diets containing the twelve culex-essential amino acids only, very little development occurred, but augmentation with either glycine or serine allowed growth and development almost as good as with the complete amino acid mixture. Augmentation of the essential twelve with alanine, cysteine, glutamic acid/amide, or tyrosine singly failed to improve development. The requirement for dietary asparagine shown by these studies appears to be unique among insects so far studied. In particular, another mosquito, Aedes aegypti, has no such requirement.  相似文献   

4.
Protein, nucleic acids, and nucleotide syntheses were studied in pea aphids, Acyrthosiphon pisum (Harris), by feeding them labeled 14C-amino acids and [5-3H]-orotic acid in sucrose. It was demonstrated that in the absence of dietary essential amino acids, aphids were capable of synthesizing nucleic acids, nucleotides, and proteins when provided with a single dietary amino acid in sucrose. It is suggested that other required amino acids were possibly supplied by the symbionts present in the pea aphid and/or were obtained from the amino acid pool in the hemolymph or glucose, one of the end products of sucrose digestion. Of the various amino acids tested, synthesis of measurable amounts of protein or other compounds occurred when alanine, aspartic acid, glutamic acid, glycine, proline, or serine were provided, but no synthesis occurred with cysteine.  相似文献   

5.
Summary The amino acid requirements of strain L-M mouse cells grown in a chemically defined medium (2×Eagle) containing only the 13 essential amino acids (EAA) were investigated. Medium and acid hydrolysate samples were analyzed for amino acid content by the method of ion exchange chromatography. The extent of utilization of the EAA differed;e.g. after 120 hr of cell growth without medium change, glutamine was exhausted from the medium; methionine, leucine, isoleucine, cystine, arginine, and valine were depleted 60 to 80%; other EAA were used to lesser extents. Although the EAA were used in excess of their requirements for protein synthesis, a correlation could generally be made between utilization and protein amino acid composition. Glutamine appeared to be a growth-limiting factor. Use of U-14C-labeled glutamine indicated that over one-half of the metabolized glutamine was converted to carbon dioxide, 17% to cell material, and 15% was extracted from the amino acid pools. Nonessential amino acids (NEAA), viz. alanine, aspartic acid, glutamic acid, glycine, proline, and serine, were released into the medium during growth, and some were reutilized. Exogenous provision of these did not improve cell growth. In contrast to the other NEAA, only serine showed net utilization when provided exogenously. When glutamic acid largely replaced the glutamine in the medium, it exerted a sparing effect on the glutamine requirement for protein synthesis. Suggestions are given for the improvement of Eagle medium for cell growth. Supported by Research Grants CA 03720 and CA 11802 from the National Institutes of Health. Predoctoral fellow supported by Grant F01-GM-42156-02 from the National Institutes of Health. Present address: Department of Community Medicine. Basic Science Building, University of California, San Diego, La Jolla, Calif. 92037.  相似文献   

6.
The media, in which a butterfly cell line (Px 58), derived from pharate adult ovaries of Papilio xuthus cultured for 8 days, were analysed to examine the changes in free amino acids in the medium during cultivation. Beta-alanine, arginine, glycine, histidine, lysine, phenylalanine, proline, serine, and tryptophan did not change markedly. Asparagine, aspartic acid, cystine, glutamine, isoleucine, leucine, methionine, threonine, tyrosine, and valine decreased to some extent with culturing. Alpha-alanine increased markedly, and glutamic acid did so to a lesser extent. Requirements of amino acids by the cell line were examined by deleting amino acids one at a time. Deletion of alpha-alanine, beta-alanine, asparagine, glutamic acid, glycine, and phenylalanine did not cause deterioration of the cell. These amino acids were thought to be non-essential or required only a little. Deletion of other amino acids impaired the cell growth severely. These amino acids would appear to be essential for growth of the Px 58 cell line.  相似文献   

7.
The aims of this work were to improve a basal synthetic medium (BM) for the growth of Lactobacillus plantarum strains and to establish their amino-acid requirements. Amino-acid use was analyzed in the most nutritionally demanding bacterium. First, the improved BM (L. plantarum synthetic medium [LPSM]) was created by increasing some vitamins in the BM, especially p-aminobenzoic acid, vitamin B12, and biotin; 5-fold phenylalanine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, and tryptophan; and 10-, 60-, and 75-fold valine, arginine, and tyrosine, respectively. With these additions, the N8 and N4 strains of L. plantarum grew rapidly to reach final cell densities similar to those obtained in Mann–Rogosa–Sharpe medium. When cysteine, leucine, valine, isoleucine, threonine, and glutamic acid were individually removed from this medium, bacterial growth significantly decreased or ceased, indicating that these amino acids are essential for growth. The N4 strain also required lysine and tryptophan in addition to the six amino acids necessary for growth. L. plantarum N4 mainly consumed essential amino acids, such as valine, lysine, cysteine, and threonine as well as the stimulatory amino acid, arginine. Thus, the BM was improved mainly on the basis of annulling limitations with respect to amino acids. With this, improved medium cell densities in the order of 109 colony-forming units/mL have been achieved, indicating that LPSM medium could be used for conducting metabolic and genetic studies on L. plantarum. Their low levels in orange juice suggest that these amino acids may not satisfy the total nitrogen requirement for the development of L. plantarum in the natural environment.  相似文献   

8.
The requirement of Bacillus thuringiensis subsp. galleriae 69/6 for amino acids and vitamins was studied. The composition of a synthetic nutrient medium was optimized. Alanine and nicotinic acid were found to be necessary for growth while other amino acids (aspartic and glutamic acids, histidine, threonine) were not indispensable although they increased the population density (yield). A deficiency as well as an excess of individual amino acids (threonine and glutamic acid) inhibited growth and decreased the yield of biomass. Elevated concentrations of aspartic and glutamic acids inhibited the formation of spores and crystals. As was demonstrated using the method of mathematical planning of an experiment, the synthetic medium contained optimal concentrations of nicotinic and amino acids and was suitable for the growth of B. thuringiensis strains as well as for the formation of spores and crystals by them.  相似文献   

9.
The aim of this work was to investigate the medium requirements for growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. The strain was grown in batch cultures on a chemically defined medium, and the technique of single omission of medium components was applied to determine the nutritional requirements. The omission of aspartic acid, glutamic acid, or glycine affected growth only slightly, and the omission of glutamine, asparagine, or threonine resulted in a stronger reduction of the growth. All the other amino acids were essential. Multiple omissions of amino acids caused an almost complete loss of growth. L. delbrueckii subsp. bulgaricus required only riboflavin, calcium pantothenate, and nicotinic acid as individual vitamins. Surprisingly, when only these vitamins were present in the medium and other vitamins were not, less growth was observed than in the complete medium but the amount of exopolysaccharide produced was significantly greater. These observations were studied in more detail with a simplified defined medium in which L. delbrueckii subsp. bulgaricus was able to grow and produce exopolysaccharides. Although the final optical density in the simplified medium was lower, the production of exopolysaccharides was about twofold higher than in the complete medium.  相似文献   

10.
The effect of vitamins (B1, B2, B3, B6, B12, H, PP and folic acid) and amino acids (glutamic and aspartic acids) on glucose isomerase biosynthesis was studied in Streptomyces albogriseolus. These compounds were added either alone or in combinations to different growth media (synthetic and complex). The results were processed using mathematical methods, and the following mixture of vitamins and amino acids was proposed to be added to the complex fermentation medium: B2, 10 micrograms/L; B6, 10 micrograms/L; H, 1 microgram/L; aspartic acid, 0.01 microM. The production of glucose isomerase rose more than 1.5 times after such additions.  相似文献   

11.
A complete synthetic medium containing 15 amino acids, a minimal synthetic medium (GAMS) containing 4 amino acids, and a supplemented minimal medium (GAMS + calcium pantothenate) have been developed for the cultivation of Hyphomicrobium neptunium ATCC 15444. Depending on the complexity of the synthetic media, generation times were approximately 2 to 3 times longer, and maximum cell densities were 0.3 to 0.9 log10 lower than in ZoBell marine broth 2216. The fates of 14C-labeled amino acids in GAMS were monitored. Results suggested that H. neptunium was auxotrophic for methionine, utilized glutamic acid as a primary energy source, and readily anabolized and catabolized serine and aspartic acid. Individual amino acid concentrations above 125 mM induced prolonged lag periods, whereas only methionine was not growth limiting at a concentration as low as 2 mM.  相似文献   

12.
Rhizoctonia repens M 32, a mycorrhizal isolate from Orchis militaris requires both a carbohydrate (glucose or sucrose) and an amino acid (aspartic acid, glycine, serine, or glutamic acid) for growth. The fungus does not require an exogenous supply of vitamins in vitro.  相似文献   

13.
The amino acid requirements of asaccharolytic Eikenella corrodens strains were investigated and a minimal amino acid medium was developed. Single amino acid deletions performed in a chemically defined medium indicated that these strains required arginine, cysteine, histidine, lysine, and proline, and partially required tyrosine. These six amino acids plus aspartic acid, glutamic acid, and glycine supported growth of E. corrodens in a medium containing only inorganic salts and vitamins.  相似文献   

14.
SUMMARY. Leptomonads of Leishmania tarentolae were grown continuously in a defined medium containing: inorganic salts', glucose, hemin, 17 amino acids, purines and pyrimidines, and a mixture of vitamins of the B group. In this medium the population of organisms reached about 20 to 50 million per ml. alter 1 week at 27°C. Only slightly better growth occurred in a partially defined medium containing bovine plasma fraction V. In earlier experiments, however, omission of the plasma fraction resulted in decreased growth, and under these circumstances cholesterol or lecithin had growth-stimulating effects. In later experiments in the fully-defined medium no effect of these lipids could be found. The leptomonads were shown to require at least the following substances: inorganic salts; a source of purines and pyrimidines; tryptophan and the nine other amino acids essential for the growth of rats, glutamic acid, tyrosine, proline, serine, one or more of the group alanine, glycine and aspartic acid; folic acid, biotin, pantothenic acid, nicotinamide, riboflavm, thiamine, and either pyridoxine plus choline or pyridoxal or pyridoxamine. Choline at 2 × 10−5 m gave optimal growth in the presence of pyridoxine at 1 × 10−5 m. In a medium with a suboptimal concentration of choline (0.4 × 10−5 m) the leptomonads grew through nine transfers but they were mostly somewhat rounded and aflagellate.  相似文献   

15.
Ten amino acids, namely, arginine, histidine, lysine, tryptophane, methionine, phenylalanine, leucine, valine, threonine and serine were indispensable for growth of rabbit blastocysts in vitro; others were nonessential. Of all the essential amino acids, arginine and lysine were required in relatively high concentrations, 10?2 M and 10?3 M, respectively, for optimum growth. Complete omission of the non-essential amino acids from the medium markedly reduced blastocyst growth. Interaction between serine and glycine demonstrated a partial sparing action on serine by glycine, similar to that observed between methionine and cysteine. The amino acid composition of a culture medium capable of providing continuous and consistent growth of rabbit blastocysts in vitro is described.  相似文献   

16.
Young excised floral buds of Aquilegia were grown on a chemically defined medium containing various concentrations of single amino acids or mixtures of amino acids. γ-Amino butyric acid significantly promoted floral development through the initiation and differentiation of carpels. These floral organs were generally absent on the basal medium. Alanine, glutamic acid, and aspartic acid had no effect upon floral development. All other amino acids were either ineffective at lower concentrations and inhibitory at higher concentrations or were inhibitory at all concentrations. Casein hydrolysate and a mixture of amino acids found in coconut milk were ineffective. The addition of both γ-amino butyric acid and alanine to the basal medium promoted development approaching that achieved on the coconut-milk medium. However, further growth factors appear to be required before development on coconut-milk medium is equalled or exceeded.  相似文献   

17.
The present work deals with the effect of six amino acids: asparagine,aspartic acid, glutamic acid, glycine, serine, and tryptophan,on growth and gametangial formation in Riccia gangetica. Allthe amino acids tested enhance vegetative growth, and amongthese glutamic acid proves best. The total number of rhizoidsis reduced in response to amino acids. Aspartic acid and glutamicacid favour antheridial production. In contrast, asparagine,serine, and tryptophan enhance archegonial formation, and amongthese asparagine elicits the best response. Glycine proves bestfor antheridial production, and also increases the number ofarchegonia. Key words: Riccia gangetica, Amino acids, Growth, Gametangial formation  相似文献   

18.
An evolutionary scheme is postulated in which a primitive code, involving only guanine and cytosine, would code for glycine (GG), alanine (GC), arginine (CG) and proline (CC). From each of these amino acids and their codons, there evolves a family of related amino acids as the code expands. The four families are: (1)alanine valine, leucine, isoleucine, phenylalanine, tyrosine, methionine and tryptophane; (2)proline, threonine and serine; (3)arginine, lysine, and histidine; (4)glycine, serine, cysteine, glutamic acid, glutamine, aspartic acid and asparagine. Except for the glycine relation to glutamic acid and aspartic acid, all amino acids are related by chemical similarities in their side chains. Glycine not having a side chain would permit a more complex set of substitutions.  相似文献   

19.
Gas chromatography-mass spectrometry studies of the nitrogen isotopic composition of the N-trifluoroacetyl n-butyl ester derivatives of the amino acids from isolated hydrolyzed cyanophycin from 15N-enriched cells led to two major findings: (1) the amino acid composition of this granular polypeptide, isolated using procedures optimized for extracting and purifying cyanophycin from cells in the stationary growth phase, varied with the culture growth condition; (2) the rate of incorporation of exogenous nitrate differed for each nitrogen atom of the amino acid constituents of cyanophycin or cyanophycin-like polypeptide. Arginine and aspartic acid were the principle components of cyanophycin isolated from exponentially growing cells and from light-limited stationary phase cells, with glutamic acid as an additional minor component. The cyanophycin-like polypeptide from nitrogen-limited cells contained only aspartic and glutamic acids, but no arginine. The glutamic acid content decreased and arginine content increased as nitrate was provided to nitrogen-limited cells. These cells rapidly incorporated nitrate at different rates at each cyanophycin nitrogen site: guanidino nitrogens of arginine>aspartic acid >-amino nitrogen of arginine>glutamic acid. Little media-derived nitrogen was incorporated into cyanophycin of exponentially growing cells during one cellular doubling time.Abbreviations asp-TAB, glu-TAB, arg-TAB N-Trifluoroacetyl n-butyl ester derivatives of aspartic acid, glutamic acid and arginine, respectively - CAP chloramphenicol - CF correction factor - TFAA Trifluoroacetic anhydride - MBTFA N-Methyl-bis-trifluoroacetamide  相似文献   

20.
Summary The effects of four lysimeter soil series under three salinity levels were evaluated for grain yield, wt/1000 seeds, protein, and amino acids in Mexican dwarf wheat (Triticum aestivum L. var. Cajeme 71). The soil series consisted of: Holtville clay loam, Greenfield sandy loam, San Emigdio sandy loam, and Altamont clay loam. The irrigation water salinity levels were designated: low –2.2 mmho, medium –4.2 mmho, and high –7.1 mmho.No significant differences were found in the amount of grain harvested or wt/1000 seeds in the 1976 crop produced on the differential soil series. The yield of the 1977 crop was significantly affected by the soil types.Effects of soil type on the protein amino acids in the grain in both years were similar. Significantly higher protein amino acid levels of histidine, arginine, aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, and phenylalanine were found in the grain grown on Altamont clay loam soil than the other types.The free amino acids in grain from the 1976 and 1977 crops were similarly affected by the soil types, except that the quantitative values of the free amino acids were substantially lower in 1977 than in 1976. The free amino acids significantly influenced by soil types were tryptophane, lysine, arginine, aspartic acid, threonine, serine, glycine, alanine, valine, isoleucine, tyrosine, and phenylalanine. In both years' crops, the sum of the free amino acid fractions was significantly higher in the grain produced on the Altamont soil than on the other soils.Salinity level in the irrigation water did not affect the 1976 crop yield or wt/1000 seeds. Although yields of the 1977 crop were significantly reduced by salinity, the wt/1000 seeds was not. The sum of protein amino acids was significantly higher in the 1976 and 1977 grain crops irrigated with high salinity water than in low salinity irrigated crops.An increased salinity irrigation water significantly reduced the sum of free amino acid fractions in the 1976 grain crop. Since some of the free amino acids in the 1977 grain crop increased while the others decreased due to the salinity level in the irrigation water, the sum of the free amino acid fractions was not significantly influenced.Significant interactions were found between soil types and salinity levels on free arginine, threonine, serine, glutamic acid, and alanine, and also on the sum of the free amino acids in the 1976 wheat grain. In the 1977 wheat grain, there were significant interactions between soil types and salinity levels on the free glutamic acid, valine, leucine, tyrosine, and phenylalanine, and on protein serine, glutamic acid, glycine, alanine, and the sum of the protein amino acids.The amounts of essential amino acids expressed as mg of amino acid/g of protein were not affected by the soil types or salinity levels. With the exception of lysine, and possibly threonine and methionine plus cystine, the essential amino acids were present in the grain at concentrations equal to or greater than recommended by WHO and FAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号