首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cryptomonas erosa Skuja, a planktonic alga, was grown in batch culture at different combinations of light intensity and temperature, under nutrient saturation. Growth was maximal (1.2 divisions · day?1) at 23.5 C and 0.043 ly · min?1, declining sharply with temperature (0.025 divisions-day?1 at 1 C). With decreasing temperature, the cells showed both light saturation and inhibition at much reduced light intensities. At the same time the compensation light intensity for growth declined towards a minimum of slightly above 0.4 × 10?4 ly · min?1 (~1 ft-c) at 1 C or <0.1 ly · day?1 (PAR). Cell division was more adversely affected by low temperature than carbon uptake, and the resulting excess production of photosynthate was both stored and excreted. Extreme storage of carbohydrates resulted in cell volumes and carbon content ca. 22 and 30 × greater, respectively, than the maxima observed for cells incubated in the dark, whereas, at growth inhibitory light levels, as much as 57% of the total assimilated carbon was excreted. A marked increase in cell pigment was observed at the lowest light levels (<10?3 ly · min?1), at high temperature. The growth response of C. erosa in culture provides insight into the abundance and distribution of cryptomonads and other small algal flagellates in nature.  相似文献   

2.
The blue-green alga Synechococcus linearis (Naeg.) Kom. was grown in P- and N-limited chemostats over a range of potentially limiting irradiances in order to determine the combined effects of light and nutrient limitation on some aspects of the composition and metabolism of this alga. Over a narrow range of low irradiances, simultaneous limitation of growth rate by light and either N or P was shown. This simultaneous limitation of growth rate by a nutrient and a physical factor can be explained by the ability of an increased supply of one to compensate in part for a decreased supply of the other. At all irradiances, the internal concentration of the limiting nutrient increased with increasing dilution rate, and the results could be fitted to the Droop relationship. With decreasing irradiance, the internal concentration of the limiting nutrient increased. There appeared to be little or no effect of light on the minimum internal concentration of P but that of N increased with decreasing light. Both chlorophyll a and biliprotein per unit particulate C increased with increasing dilution rate and decreasing irradiance. The critical N/P ratio increased with decreasing light as the N requirement of N-limited cells increased faster than did the P requirement of P-limited cells. The composition of exponentially growing cells in complete medium varied much less with light. Neither dilution rate nor irradiance during growth had a great effect on saturated rates of P or N uptake or alkaline phosphatase activity. Calculated assimilation ratios increased with light and dilution rate. The role of the flexibility of nutrient composition in adaptation to adverse conditions and the implications of the results for the use of physiological indicators of nutrient status are discussed.  相似文献   

3.
Cell division rate, carbon fixation per cell, cell width and chloroplast length of Phaeodactylum tricornutum Bohlin were determined at 30 different combinations of light intensity and temperature. Division rate peaked at 23° C or less depending on light intensity. For each light intensity studied, carbon fixation increased directly with growth temperature from 14 to 25° C. The slope of this relationship was modified by light intensity. Cells grown at 23–25° C tended to be larger than those grown at lower temperatures, possibly due to increased carbon fixation per cell coupled with lower division rates. Chloroplasts were largest at a combination of temperatures above 21° C and low light intensities. This effect could cause cells to sink at a higher than normal rate due to reduced vacuole size and is presented as a possible mechanism affecting the distribution of P. tricornutum.  相似文献   

4.
Effects of light and temperature on growth of two freshwater photosynthetic cryptophytes of different cell size were studied in batch cultures. For the smaller Cryptomonas 979/67, Steele's model and equation of Platt et al. described the relationship between growth rate and photon flux density (PFD), whereas a hyperbolic tangent function gave a better fit for the larger Cryptomonas 979/62. Maximum growth rates given by the three models were consistent with each other, but the hyperbolic tangent function gave slightly lower estimates. Maximum growth rates in relation to temperature were well described for both species by the model of Logan et al. The optimum temperature for growth for Cryptomonas 979/67 was ca. 24.5° C and 19.0° C for Cryptomonas 979/62. The lethal temperatures were 30.4° C and 23.1° C for 979/67 and 979/62, respectively. The estimated maximum growth rates were 1.38 div.·day?1 for Cryptomonas 979/67 and 0.87 div.·day ?1 for Cryptomonas 979/62. There were interspecific differences in photoadaptation strategies, as Cryptomonas 979/67 required relatively high PFDs to show net growth, whereas Cryptomonas 979/62 grew at lower irradiances. Cryptomonas 979/67 showed photoinhibition soon after the saturation point, but Cryptomonas 979/62 tolerated a much wider range of irradiance. From their growth responses to light, Cryptomonas 979/ 67 appears to be a stenotopic and Cryptomonas 979/ 62 a eurytopic strain.  相似文献   

5.
Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L?1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax~0.9 and Ki=0.31–0.56 μmol·L?1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.  相似文献   

6.
Microscopic algae ran grow rapidly in natural waters that are extremely low in essential macro and micro nutrients. Yet, their nutrient uptake systems exhibit only mediocre nutrient affinities, the saturation constants being often 10–1000 times the (estimated) ambient concentrations. The large difference which exists between the saturation constants for growth (Kμ) and short term uptake (Kρ) are due to the acclimation capabilities of the organisms. Over the acclimation range, Kμ to Kρ, the algae can maintain maximum growth rate by modulating both their internal nutrient quotas (Q) and their maximum short term nutrient uptake rates (ρmax) in response to variations in external nutrient concentrations. The commonly assumed hyperbolic relationships for steady growth and uptake (viz “chemostat theory”) are coherent with a hyperbolic expression for short term uptake including a variable maximum (ρmax). The ratio of the saturation constants for growth and uptake is then directly related to the extreme in quotas and maximum uptake rates: Kμ/Kρ= Qmin/Qmax·ρlomaxhimax. This result is applicable even when the exact hyperbolic laws are not. Published data on Fe, Mn, P and N limitation in algae are generally in accord with the theory and demonstrate a wider acclimation range for trace than for major nutrients.  相似文献   

7.
Rates of NH4+ and NO3? uptake were determined by accumulation of 15N in plant tissue and by disappearance of nutrient from the medium. Agreement between rates calculated by the two methods was good, averaging 82.7% (SD = 15.8%) and 91.2% (SD = 13.7%) for NH4+ and NO3? uptake, respectively. An average of 93.4 and 96.0% of added 15NH4+ and 15NO3? was recovered from the medium and /or plant tissue at the end of the incubations. Both bacterial uptake and regeneration of NH4+ may contribute to discrepancies between NH4+ uptake rates calculated by 15N accumulation and disappearance of NH4+ from the medium. The influence of tissue composition on uptake of NH4+, NO3? and PO43- by Enteromorpha prolifera (Müller) J. Agardh was examined. For NH4+ uptake, Vmax was 188 μmol NH4+. g dry wt?1. h?1 and Ks ranged from 9.3 to 13.4 μM, but there was no correlation between kinetic parameters and tissue nitrogen content. For NO3?, both kinetic parameters were higher for plants with low tissue nitrogen than for plants with high tissue nitrogen. Maximum rates were 169 and 75.4 μmol NO3?. g dry wt?1. h?1, and Ks was 13.3 and 2.31 μM for low and high tissue nitrogen plants, respectively. Estimates of uptake in the field suggested that NH4+ accounted for 65% and NO3? for up to 35% of total nitrogen uptake during the summer. Nutrient uptake rates of field-collected plants also indicated that E. prolifera in Yaquina Bay, Oregon was not likely to have been nitrogen-limited, but may have been phosphorus-limited.  相似文献   

8.
Microscopic algae can grow rapidly in natural waters that are extremely low in essential macro and micro nutrients. Yet, their nutrient uptake systems exhibit only mediocre nutrient affinities, the saturation constants being often 10–1000 times the (estimated) ambient concentrations. The large difference which exists between the saturation constants for growth (Ku) and short term uptake (Kp) are due to the acclimation capabilities of the organisms. Over the acclimation range, Ku, to Kp the algae can maintain maximum growth rate by modulating both their internal nutrient quotas (Q) and their maximum short term nutrient uptake rates (Pmax) in response to variations in external nutrient concentrations. The commonly assumed hyperbolic relationships for steady growth and uptake (viz “chemostat theory”) are coherent with a hyperbolic expression for short term uptake including a variable maximum (Pmax). The ratio of the saturation constants for growth and uptake is then directly related to the extreme in quotas and maximum uptake rates: Kμ/Kρ= Qmin/Qmaxρmax/ρQmax. This result is applicable even when the exact hyperbolic laws are not. Published data on Fe, Mn, P and N limitation in algae are generally in accord with the theory and demonstrate a wider acclimation range for trace than for major nutrients.  相似文献   

9.
The two tropical estuarine dinoflagellates, Alexandrium tamiyavanichii Balech and A. minutum Halim, were used to determine the ecophysiological adaptations in relation to their temperate counterparts. These species are the two main causative organisms responsible for the incidence of paralytic shellfish poisoning (PSP) in Southeast Asia. The effects of light (10, 40, 60, and 100 μmol photons·m?2·s?1) and temperature (15, 20, and 25°C) on the growth, nitrate assimilation, and PST production of these species were investigated in clonal batch cultures over the growth cycle. The growth rates of A. tamiyavanichii and A. minutum increased with increasing temperature and irradiance. The growth of A. tamiyavanichii was depressed at lower temperature (20°C) and irradiance (40 μmol photons·m?2·s?1). Both species showed no net growth at 10 μmol photons·m?2·s?1 and a temperature of 15°C, although cells remained alive. Cellular toxin quotas (Qt) of A. tamiyavanichii and A. minutum varied in the range of 60–180 and 10–42 fmol PST·cell?1, respectively. Toxin production rate, Rtox, increased with elevated light at both 20 and 25°C, with a pronounced effect observed at exponential phase in both species (A. tamiyavanichii, r2=0.95; A. minutum, r2=0.96). Toxin production rate also increased significantly with elevated temperature (P<0.05) for both species examined. We suggest that the ecotypic variations in growth adaptations and toxin production of these Malaysian strains may reveal a unique physiological adaptation of tropical Alexandrium species.  相似文献   

10.
Nitrogen uptake rates of Ulva curvata (Kütz.) de Toni (Ulvales) and Codium decorticatum (Woodw.) Howe (Caulerpales) grown under several N addition regimes were determined by perturbation and continuous mode techniques, and as N demand, by the product of growth rate and tissue N. Uptake rates are reported as the slope of rate vs. concentration curves in each case. N uptake rates of U. curvata were inversely correlated with tissue N and affected only slightly by temperature. There was no correlation of N uptake rate with tissue N in C. decorticatum. N uptake rates of C. decorticatum were affected by temperature but to a lesser degree than were growth rates. Neither N addition per se nor light affected N uptake capacity of either species. The proximal mechanism for seaweeds accumulation of N at low light and temperatures may be that N uptake is less limited by light and temperature than is growth. This in turn may partially compensate for the effects of reduced light and temperature on growth by increasing pigment and enzyme levels. Perturbation uptake rates were higher than continuous mode or N demand rates in Ulva but not in Codium. N uptake rates of Ulva were higher than those of Codium, but N storage capacities were lower. These two observations suggest that Ulva experiences a fundamentally more variable N supply than does Codium. This is consistent with the clarification of Ulva as an ephemeral form and of Codium as persistent. A seaweed's functional form therefore appears to influence the spectrum of resource variability available to it as well as its ability to persist in the environment.  相似文献   

11.
The effects of light on growth, RuBPCase activity, and chemical composition of Ulva curvata (Kütz.) De Toni and U.Lactuca L. were examined at a range of temperatures and N-supply levels. Groeth of Ulva speices becomes more light-dependent with increasing temperature and N. The effect of light on RuBPcase is N-dependent, with a positive correlation under N-sufficient and a negative correlation under N-limited conditions. Light effects on pigment levels and ratios may be independent of effects on growth rate. These interactions uncouple growth rate from RuBPCase and pigments, and thus from tissue%N. The limits of variability of the growth-%N relationship can be described by a parabola. Under relative light or temperature-limitation, %N is negatively, growth increase with increasing %N. Tight coupling of seaweed wrowth and chemical composition may therefor be relatively rare in natural waters where growth can be simultaneously limited by light, temperature, and N.  相似文献   

12.
Clonal cultures were established of single cells of Pseudopedinella pyriforme Carter isolated from the Chesapeake Bay. Axenic cultures were incubated at 5, 10 and 15 C; in 2 1/2, 5, 7 1/2, 10 and 15‰; and at 143, 285, 428, 571 and 714 μW/cm2 white light. Maintainable growth rates were calculated from absorbance readings taken for 3 to 5 days from acclimated cultures. The maximum number of doublings per day was 0.9 at 2 1/2‰ salinity, 571 μW/ cm2 and 15 C. A salinity of 5 ‰ produced the fastest growth at most light intensities up to 428μW/cm2 and temperatures of 5, 10 and 15 C.  相似文献   

13.
Uptake and assimilation of nitrogen and phosphorus were studied in Olisthodiscus luteus Carter. A diel periodicity in nitrate reductase activity was observed in log and stationary phase cultures; there was a 10-fold difference in magnitude between maximum and minimum rates, but other cellular features such as chlorophyll a, carbon, nitrogen, C:N ratio (atoms) · cell?1 were less variable. Ks values (~2 μM) for uptake of nitrate-N and ammonium-N were observed. Phosphorus assimilated · cell?1· day?1 varied with declining external phosphorus concentrations; growth rates <0.5 divisions · day?1 were common at <0.5 μM PO4-P. Phosphate uptake rates (Ks= 1.0–1.98 μM) varied with culture age and showed multiphasic kinetic features. Alkaline phosphatase activity was not detected. Comparisons of the nutrient dynamics of O. luteus to other phytoplankton species and the ecological implications as related to the phytoplankton community of Narragansett Bay (Rhode Island) are discussed.  相似文献   

14.
The response to arsenate in growth and phosphate uptake by five algae in culture varied considerably. The growth rates of Melosira granulata var. angustissima O. Müll, and Ochromonas vallesiaca Chodat were depressed by 1 μM arsenale. Chlamydomonas reinhardtii Dang. required 10 μM for the same degree of depression, while the growth rules of Cryptomonas eroasa Ehr. and Anabaena variabilis Kütz. were unaffeted up to 100 μM. However, following depletion of phosphate, cultures of the later two algae began to die at the higher concentrations of arsenale tested. Growth of C. reinhardtii in the presence of 35 μM arsenate resulted in characteristics of P deficiency. Comparison of rates of photosynthesis, respiration, and phosphate uptake between cultures of C. reinhardtii which had grown in the presence and absence of arsenate showed little evidence after 16 doublings that it had adapted to arsenale.  相似文献   

15.
The lipids of Cryptomonas rufescens (Skuja) cells have been analyzed. Quantitative changes of polar and neutral lipids were observed during cell encystment, induced by cultures in a nitrogen-deficient medium. During encystment, thylakoids disappeared while unsaturated galactolipids, characteristics of chloroplast membranes, decreased and neutral lipids accumulated in the cytoplasm. When excystment was induced, the reversal of the phenomenon was observed while thylakoids containing galactolipids were formed.  相似文献   

16.
The acidophilic diatom Asterionella ralfsii cf. var. americana Körn. was grown in continuous culture to examine the influences of both pH and Al on Si-limited growth and uptake kinetics. In contrast to nutrient-replete cultures of A. ralfsii, lowering pH from approximately 6 to 5 reduced algal cell density, chlorophyll a concentration, and intensity of in vivo fluorescence (IVF) at steady state. The lower pH treatments were also characterized by lower Si cell quotas and higher residual dissolved Si concentrations in chemostats with similar nutrient supply rates. Physiological responses to Al stress differed from those to pH reduction when cultures were Si-limited. Nominal Al additions of 20 μmol·L?1 reduced chlorophyll a concentration and IVF values at higher pH, but all other biomass and chemical parameters remained constant at steady state. The combined efects of Al and reduced pH were more severe than either stress alone, inducing culture washout at pH 4.8. Short-term Si uptake experiments performed at pH 6 showed that Al influenced Michaelis-Menten parameter estimates. Half-saturation (Ks and maximum uptake rate (Vm) constants increased approximately 8- and 2-fold in the presence of Al, respectively, but this difference was only significant for Vm. Similar to previously observed effects of Al on cell morphology in A. ralfsii, Si uptake kinetics were more sensitive to Al additions than to Silimited growth per se.  相似文献   

17.
The dependence of substrate saturated uptake of 15NH4+, 15NO3?, 32PO43?, and 14CO2 on photosynthetic photon flux density (PPFD or photsynthetically active radiation, 400–700 nm) was characterized seasonally in oligotrophic Flathead Lake, Montana. PO43? uptake was not dependent upon PPFD at any time of the year, whereas NH4+, NO3?, and CO2 uptake were consistently dependent on PPFD over all seasons. Maximal rates of NH4+, NO3? and CO2 uptake usually occurred near 40% of surface PPFD, which corresponded to about 5 m in the lake; inhibition was evident at PPFD levels greater than 40%. NH4+, NO3? and PO43? were incorporated in the dark at measurable rates most of the year, whereas dark CO2 uptake was always near 0 relative to light uptake. CO2 and NO3? uptake were more strongly influenced by PPFD than was NH43? uptake. The PPFD dependence of PO43?, NH4+, NO3? and CO2 uptake may affect algal growth and nutrient status by influencing the balance in diel and seasonal C:N:P uptake ratios.  相似文献   

18.
The nitrate uptake capacity of mature blade tissue of the giant kelp, Macrocystis pyrifera (L.) C. Ag., was examined as a function of the availability of light and nitrate. Time course measurements indicated that nitrate uptake rate, as measured by the incorporation of 15N, was significantly increased by N starvation. The response was linear over the first hour of exposure regardless of the N status of the tissue indicating that surge uptake was not responsible for the increase. The Michaelis-Menten parameters Vmax and Ks, however, were not significantly changed by either growth nitrate concentration or growth irradiance as a result of high variability among blades. Similarly, the initial slope (α) of the nitrate uptake kinetics curves was unaffected. Concentration of photosynthetic pigments increased in response to increased nitrate availability but not to increased growth irradiance. Time course and pigment data demonstrated that mature blade tissue responds to increased N availability by decreasing its capacity to take up nitrate and by increasing its investment in photosynthetic pigments, perhaps for N storage or enhanced light-harvesting capabilities and the increase in reducing power available for N assimilation. This study provides evidence for a dynamic regulatory system that responds to changes in nitrate availability in an integrated manner.  相似文献   

19.
Achnanthes longipes Ag. is a marine stalk‐forming diatom that grows in dense biofilms. The effects of cell density, temperature, and light on growth and stalk production were examined in the laboratory to determine how they affected the ability of this diatom to form a biofilm. Stalk production abruptly increased when A. longipes was cultured at a density of 5.4 × 103 cells·mL ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
, with a lag before stalk production occurring in cultures initiated at lower densities. Growth occurred at all temperatures from 8 to 32° C, with maximum growth at 26° C. Growth rate was light saturated at 60 μmol photons·m ? 2·s ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
. Stalk production was determined as the proportion of cells producing stalks and stalk length in response to various temperatures and light intensities at high (5000 cells·mL ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
) and low (500 cells·mL ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
) densities. More cells formed stalks at high density, with no difference in stalk length. The proportion of cells producing stalks was maximal at 20° C, with little change at 17–32° C. Stalk length was at a maximum between 14 and 26° C. Stalk production showed little change in response to varying light intensity. The results of an earlier investigation on the effects of bromide concentration on stalk formation were expressed as the proportion of cells forming stalks and the lengths of the stalks. Both measures of stalk production varied with bromide concentration, with maximum values at 30 mM bromide. The increased stalk production at higher densities may be a means of elevating cells above the substrate to avoid competition in the dense biofilm.  相似文献   

20.
Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 μM, the mean rate of nitrogen uptake was 10±2 nmol·cm?2·h?1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=?0.77), but a positive relationship between log SA:V and log maximum specific growth rate (μmax; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (?0.49) was steeper than that required to sustain μmax (?0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm?2·h?1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号