首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatoms, but not flagellates, have been shown to increase rates of nitrogen release after a shift from a low growth irradiance to a much higher experimental irradiance. We compared NO3 ? uptake kinetics, internal inorganic nitrogen storage, and the temperature dependence of the NO3 ? reduction enzymes, nitrate (NR) and nitrite reductase (NiR), in nitrogen‐replete cultures of 3 diatoms (Chaetoceros sp., Skeletonema costatum, Thalassiosira weissflogii) and 3 flagellates (Dunaliella tertiolecta, Pavlova lutheri, Prorocentrum minimum) to provide insight into the differences in nitrogen release patterns observed between these species. At NO3 ? concentrations <40 μmol‐N·L ? 1, all the diatom species and the dinoflagellate P. minimum exhibited saturating kinetics, whereas the other flagellates, D. tertiolecta and P. lutheri, did not saturate, leading to very high estimated K s values. Above ~60 μmol‐N·L ? 1, NO3 ? uptake rates of all species tested continued to increase in a linear fashion. Rates of NO3 ? uptake at 40 μmol‐N·L ? 1, normalized to cellular nitrogen, carbon, cell number, and surface area, were generally greater for diatoms than flagellates. Diatoms stored significant amounts of NO3 ? internally, whereas the flagellate species stored significant amounts of NH4 + . Half‐saturation concentrations for NR and NiR were similar between all species, but diatoms had significantly lower temperature optima for NR and NiR than did the flagellates tested in most cases. Relative to calculated biosynthetic demands, diatoms were found to have greater NO3 ? uptake and NO3 ? reduction rates than flagellates. This enhanced capacity for NO3 ? uptake and reduction along with the lower optimum temperature for enzyme activity could explain differences in nitrogen release patterns between diatoms and flagellates after an increase in irradiance.  相似文献   

2.
Nitrogen uptake studies were conducted during an aestival “brown tide” bloom in Shinnecock Bay, Long Island, New York. The same station was sampled in late July and mid-August 1995 when Aureococcus anophagefferens composed >90% and 30–40% of the total cell density, respectively. Experiments were designed to examine the effect of incubation duration on the uptake kinetics, and the effect of light and temperature dependencies of NH4+, urea, and NO3? uptake. Maximum specific uptake rates (V'max) decreased in the order NH4+, urea, NO3? and were nonlinear with time for NH4+ and urea, both of which exhibited an exponential decline between 1 and 10 min and then did nut significantly change for 60 min. Nitrogen uptake kinetic experiments exhibited a typical hyperbolic response for urea and NO3?. Half-saturation constants. (Ks) were calculated to he 0.03 and 0.12 μmol · L?1 for urea and NO3?; respectively, but could not be calculated for NH4+ under these experimental conditions. Nutrient uptake rate versus, irradiance (NI) experiments showed that maximum uptake rates occurred at ≤% of incident irradiance on both sampling dates and that values of V′max-cell (NH4+) were on average 30% greater than V′max-cell (urea). A7°–9°C temperature decrease in incubation temperature between the two NI experiments in August resulted in a 30% decrease in V′max-cell(NH4+), no change in V′max-cell(urea), and a 3–4-fold decrease in calculated Klt values for both NH4+ and urea. The results from these experiments demonstrate that A. anophagefferens has a higher affinity for NH4+ and urea than for NO3? and that this particular species is adapted to use these substrates at low irradiances and concentrations. The data presented in this study are also consistent with the hypothesis that A. anophagefferens may be an oceanic clone that was displaced by an anomalous oceanographic event.  相似文献   

3.
A planktonic alga similar in general morphology and pigments to Aureococcus anophagefferens Hargraves and Sieburth has caused persistent and ecologically damaging blooms along the south Texas coast. Experiments using 100 μM NO3?, NO2?, and NH4+ demonstrated that the alga could not use NO3? for growth but could use NO2? and NH4+. Doubling iron or trace metal concentrations did not permit growth on NO3?. Chemical composition data for cultures grown in excess NO3? or NH4+, respectively, were as follows: N·cell?1 (0.88 vs. 1.3 pg), C:N ratio (25:1 vs. 6.4:1), C:chlorophyll a (chl a) (560:1 vs. 44:1), and chl a·cell?1 (0.033 vs. 0.16 pg). These data imply that cells supplied with NO3? were N-starved. Culture addition of 10 mM final concentration chlorate (a nitrate analog) did not affect the Texas isolate while NO3? utilizing A. anophagefferens was lysed, suggesting that the NO3? reductase of the Texas isolate is nonfunctional. Rates of primary productivity determined during a dense bloom indicated that light-saturated growth rates were ca. 0.45 d?1, which is similar to maximum rates determined in laboratory experiments (0.58 d?1± 0.16). However, chemical composition data were consistent with the growth rate of these cells being limited by N availability (C:N 28, C:chl a 176, chl a·cell?1 0.019). Calculations based on a mass balance for nitrogen suggest that the bloom was triggered by an input of ca. 69 μM NH4+ that resulted from an extensive die-off of benthos and fish.  相似文献   

4.
The activity of extracted NADH-NO3? reductase was measured in the marine dinoflagellates Amphidinium carteri Hulburt and Cachonina niei Loeblich. Its activity showed a diel periodicity and was ca. twice as great at midday as at midnight. The enzyme activity was unstable, with an in vitro half-life of 2–3 h. Values of enzyme activity were low or undetectable during lag phase but paralleled the instantaneous growth rate value during log phase. Nitrate reductase activity was not found in the stationary phase of growth, but additions of NO3? resulted in enzyme activity after 24h. When A. carteri was exposed to a series of light intensities for several weeks, the division rate and enzyme activity increased with increasing light intensity up to saturating intensities. In 6 h exposures, enzyme activity decreased with decreasing light intensities below light intensities saturating division rate. Additions of NH4+ (0.5–50 μm) to A. carteri cultures decreased the amount of extractable enzyme. The in vitro activity was not inhibited by similar NH+4 concentrations.  相似文献   

5.
Simultaneous assimilation of NH4 and NO3 by Gelidium nudifrons Gardner was observed in culture experiments of 4 possible combinations of NH4 and NO3. The combinations tested were those in which the concentration of both N sources were in the range of 3.0–4.0 μg-atN · l?1; both in the range of 0.5–1.0 μg-atN · l?1; one in the 3.0–4.0 μg-atN · l?1 range and the other in the 0.5–1.0 μg-atN · l?1 range; and, visa versa. The data suggest that the pools of both NH4 and NO3 are simultaneously available for algal assimilation.  相似文献   

6.
1. High water column NO3? concentrations, low light availability and anoxic, muddy sediments are hypothesised to be key factors hampering growth of rooted submerged plants in shallow, eutrophic fresh water systems. In this study, the relative roles and interacting effects of these potential stressors on survival, growth, allocation of biomass and foliar nutrient concentrations of Potamogeton alpinus were determined in a mesocosm experiment using contrasting values of each factor (500 versus 0 μmol L?1 NO3?; low irradiance, corresponding to the eutrophic environment, versus ambient irradiance; and muddy versus sandy sediment). 2. Low irradiance, high NO3? and sandy sediment led to reduced growth. In a muddy sediment, plants had lower root : shoot ratios than in a sandy sediment. 3. Growth at high NO3? and on the sandy sediment resulted in lower foliar N and C concentrations than in the contrasting treatments. The C : N ratio was higher at high NO3? and on the sandy sediment. Foliar P was higher on the muddy than on the sandy sediment but was not affected by irradiance or NO3?. The N : P ratio was lowest at high NO3? on the sandy sediment. 4. Total foliar free amino acid concentration was lowest on sand, low irradiance and high NO3?. Total free amino acid concentration and growth were not correlated. 5. Turbidity and ortho‐PO43? concentration of the water layer were lower at high water column NO3? indicating that the growth reduction was not associated with increased algal growth but that physiological mechanisms were involved. 6. We conclude that high water column NO3? concentrations can significantly reduce the growth of ammonium preferring rooted submerged species such as P. alpinus, particularly on sediments with a relatively low nutrient availability. Further experiments are needed to assess potential negative effects on other species and to further elucidate the underlying physiological mechanisms.  相似文献   

7.
The uptake of nitrate, nitrite and ammonium by Codium fragile subsp. tomentosoides (van Goor) Silva was measured at different combinations of temperature (6–30 C) and irradiance (0–140 μEin.m-2. s-1). Uptake of all three forms of N was greater at 12–24 C than at 6 and 30 C. Although uptake was stimulated by light, saturation occurred at relatively low irradiance (7–28 μEin m-2 s-1, depending on the N source and temperature). The Michaelis-Menten uptake constants (Vmax K)varied with temperature. Vmax was greatest at intermediate temperatures and K was lowest at lower temperatures. The Vmaxfor NH4+ was higher and the K, for NH4+was lower than those for NO3-- and NO2--. Codium was capable of simultaneously taking up all three forms of inorganic N although the presence of NH4+ reduced the uptake of both NO3-- and NO2--. The results of this study indicate that part of the ecological success of Codium in a N-limited environment may be due to its N uptake capabilities.  相似文献   

8.
We examined the energetic dependency of the biochemical and physiological responses of Thalassiosira pseudonana Hasle and Heimdal. Chaetoceros gracilis Schütt, Dunaliella tertiolecta Butcher, and Gymnodinium sanguineum Hirasaka to NH4+, NO3?, and urea by growing them at subsaturating and saturating photon flux (PF). At subsaturating PF, when energy was limiting, NO3? and NH4+ grown cells had similar growth rates and C and X quotas. Therefore, NO3? grown cells used up to 48% more energy than NH4+ grown cells to assimilate carbon and nitrogen. Based on our measurements of pigments, chlorophyll-a-specific in vivo absorption cross-section, and fluorescence-chlorophyll a?1, we suggest that NO3?, grown cells do not compensate for the greater energy requirements of NO3? reduction by trapping more light energy. At saturating PF, when energy is not limiting, the utilization of NO3?, compared to NH4+ resulted in lower growth rates and N quotas in Thalassiosira pseudonana and lower N quotas in Chaetoceros gracilis, suggesting enzymatic rather than energetic limitations to growth. The utilization of urea compared to Nh4+ resulted in lower growth rates in Chaetoceros gracilis and Gymnodinium sanguineum (saturating PF) and in lower N quotas in all species tested at both subsaturating and saturating PF. The high C:N ratios observed in all urea-grown species suggest that nitrogen assimilation may be limited by urea uptake or deamination and that symptoms of N limitation in microalgae may be induced by the nature of the N source in addition to the N supply rate. Our results provide new eridence that the maximum growth rates of microalgae may be limited by enzymatic processes associated with the assimilation of NO3?, or urea.  相似文献   

9.
NH4+ and NO3? uptake were measured by continuous sampling with an autoanalyzer. For Hypnea musciformis (Wulfen) Lamouroux, NO3?up take followed saturable kinetics (K2=4.9 μg-at N t?1, Vmax= 2.85 μg- at N, g(wet)?1. h?1. The ammonium uptake data fit a trucatd hyperbola, i.e., saturation was not reach at the concentrations used. NO3? uptake was reduced one-half in the presence of NH4+, but presence of NO3? had no effect on NH4+ uptake. Darkness reduced both NO3? and NH4+ uptake by one-third to one-half. For Macrocystis pyrufera (L) C. Agardh, NO3? uptake followed saturable kinetices: K2=13.1 μg-at N. l?1. Vmax=3.05 μg-at N. g(wet)?1. h?1.NH4+ uptake showed saturable kinetics at concentration below 22 μg-at N l -1 (K2=5.3 μg-at N.1–1, Vmax= 2.38 μg-at N G (wet)?1.h?1: at higher concentration uptake increased lincarly with concentrations. NO3?and NH4+ were taken up simulataneously: presence of one form did not affect uptake of the other.  相似文献   

10.
The growth of Salvinia molesta D.S. Mitchell was studied in a greenhouse using controlled-temperature water-baths at 16, 19 and 22°C and 4 different nitrogen compounds (NO3?, NH4+, NH4NO3 and urea) at levels up to 60 mg N l?1. Little growth occurred at 16°C even if 20 mg N l?1 was supplied together with other nutrients including phosphorus (2 mg H2PO4-P l?1). The highest relative growth rate and total dry matter production occurred at 22°C when plants were supplied with 20 mg NH4-N l?1. At this temperature, the NH4+ ion was superior to the NO3? ion or urea as a nitrogen source (almost doubling the biomass), but was not significantly better than NH4NO3. Over a period of 19 days for plants receiving 0.02 mg NH4-N l?, biomass increased 4-fold at 16°C, 9-fold at 19°C and 10-fold at 22°C. In contrast, for plants receiving 20 mg NH4-N l?1, biomass increased 4-fold at 16°C, 18-fold at 19°C and 38-fold at 22°C.  相似文献   

11.
We investigated whether six arctic plant species have the potential to induce nitrate reductase (NR) activity when exposed to NO3 --nitrogen under controlled environment conditions, using an in vivo assay that uses the rate of NO2 --accumulation to estimate potential NR activity. We also assessed the effect of low root temperatures on NR activity, growth and nitrogen uptake (using 15N applications) in two of the selected species. Five of the six species (Cerastium alpinum, Dryas intergrifolia, Oxyria digyna, Saxifraga cernua and Salix arctica) were capable of inducing NR activity when exposed to solutions containing 0.5 mM NO3 - at 20°C for 10 days. Although in vivo NR activity was not induced in Saxifraga oppositifolia under controlled conditions, we conclude that it was capable of growing successfully on NO3 -, due to the presence of moderate rates of NR activity observed in both NH4 +-grown and NO3 --treated plants. Exposure of O. digyna and D. integrifolia to 3°C root temperatures for two weeks, with the shoots kept at 20°C, resulted in root and leaf NR activity rates of NO3 --treated plants being reduced to rates exhibited by NH4 +-grown plants. Although these decreases in NR in both species appeared to be due to limitations in NO3 --uptake and growth rate (rather than direct low-temperature inhibition of NR synthesis per se), direct low-temperature inhibition of root NR synthesis could not be ruled out. In contrast to the temperature insensitivity of NH4 + uptake in D. integrifolia, NO3 --uptake in D. integrifolia was inhibited by low root temperatures. We conclude that the selected arctic species have the genetic potential to utilize NO3 --nitrogen, and that low root temperatures, in conjunction with other environmental limitations, may be responsible for the lack of induction of NR in D. integrifolia and Salix arctica under field conditions.  相似文献   

12.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

13.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

14.
Phytoplankton growth rate in response to irradiance can be approximated by a hyperbola defined by three coefficients: i) initial slope (α); ii) asymptote (μm); and, iii) X-axis intercept or compensation irradiance (Ic). To mathematically represent the interaction of temperature and irradiance on growth rate, one must describe the relationship between these constants and temperature. The marine diatom, Skeletonema costatum (Greville) Cleve, was grown in unialgal culture at different levels of irradiance and 2-3 photoperiods at 0, 5, 10, 16 and 22 C. The value of Ic is ca. 1.0 ly·day?1 or less at all temperatures. The initial slope (div·ly?1) is a “u-shaped” function of temperature described by the second degree polynomial, α= 0.25–0.02T+0.001T2. Within the range 0–10 C, μm (div·day?1) is an exponential function of temperature described by the equation, μm= 0.48 exp (0.126T). At each temperature and selected levels of irradiance, cell size and cellular content of C, N and chl a were determined. The C:chl a and N:chl a ratios increased with irradiance because of increases in C and decreases in chl a. At lower temperatures (0, 5, 10 C), the rate of increase of both ratios with irradiance was greater than at the higher temperatures (16, 22 C). Cellular content of N was independent of irradiance and temperature, and the C:N ratio ranged from 5 to 8 with a slight tendency to lower values at low irradiance. Cell volume was not influenced by either temperature or irradiance.  相似文献   

15.
Effect of influent substrate ratio on anammox process was studied in sequencing batch reactor. Operating temperature was fixed at 35 ± 1 °C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. When influent NO2 ?-N/NH4 +-N was no more than 2.0, total nitrogen removal rate (TNRR) increased whereas NH4 +-N removal rate stabilized at 0.32 kg/(m3 d). ΔNO2 ?-N/ΔNH4 +-N increased with enhancing NO2 ?-N/NH4 +-N. When NO2 ?-N/NH4 +-N was 4.5, ΔNO2 ?-N/ΔNH4 +-N was 1.98, which was much higher than theoretical value (1.32). The IC50 of NO2 ?-N was 289 mg/L and anammox activity was inhibited at high NO2 ?-N/NH4 +-N ratio. With regard to influent NH4 +-N/NO2 ?-N, the maximum NH4 +-N removal rate was 0.36 kg/(m3 d), which occurred at the ratio of 4.0. Anammox activity was inhibited when influent NH4 +-N/NO2 ?-N was higher than 5.0. With influent NO3 ?-N/NH4 +-N of 2.5–6.5, NH4 +-N removal rate and NRR were stabilized at 0.33 and 0.40 kg/(m3 d), respectively. When the ratio was higher than 6.5, nitrogen removal would be worsened. The inhibitory threshold concentration of NO2 ?-N was lower than NH4 +-N and NO3 ?-N. Anammox bacteria were more sensitive to NO2 ?-N than NH4 +-N and NO3 ?-N. TNRR would be enhanced with increasing nitrogen loading rate, but sludge floatation occurred at high nitrogen loading shock. The Han-Levenspiel could be applied to simulate nitrogen removal resulting from NO2 ?-N inhibition.  相似文献   

16.
When NH4 + or NO3 ? was supplied to NO3 ? ‐stressed cells of the microalga Dunaliella tertiolecta Butcher, immediate transient changes in chl a fluorescence were observed over several minutes that were not seen in N‐replete cells. These changes were predominantly due to nonphotochemical fluorescence quenching. Fluorescence changes were accompanied by changes in photosynthetic oxygen evolution, indicating interactions between photosynthesis and N assimilation. The magnitude of the fluorescence change showed a Michaelis‐Menten relationship with half‐saturation concentration of 0.5 μM for NO3 ? and 10 μM for NH4 + . Changes in fluorescence responses were characterized in D. tertiolecta both over 5 days of N starvation and in cells cultured at a range of NO3 ? ‐limited growth rates. Variation in responses was more marked in starved than in limited cells. During N starvation, the timing and onset of the fluorescence responses were different for NO3 ? versus NH4 + and were correlated with changes in maximum N uptake rate during N starvation. In severely N‐starved cells, the major fluorescence response to NO3 ? disappeared, whereas the response to NH4 + persisted. N‐starved cells previously grown with NH4 + alone showed fluorescence responses with NH4 + but not NO3 ? additions. The distinct responses to NO3 ? and NH4 + may be due to the differences between regulation of the uptake mechanisms for the two N sources during N starvation. This method offers potential for assessing the importance of NO3 ? or NH4 + as an N source to phytoplankton populations and as a diagnostic tool for N limitation.  相似文献   

17.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

18.
The dependence of substrate saturated uptake of 15NH4+, 15NO3?, 32PO43?, and 14CO2 on photosynthetic photon flux density (PPFD or photsynthetically active radiation, 400–700 nm) was characterized seasonally in oligotrophic Flathead Lake, Montana. PO43? uptake was not dependent upon PPFD at any time of the year, whereas NH4+, NO3?, and CO2 uptake were consistently dependent on PPFD over all seasons. Maximal rates of NH4+, NO3? and CO2 uptake usually occurred near 40% of surface PPFD, which corresponded to about 5 m in the lake; inhibition was evident at PPFD levels greater than 40%. NH4+, NO3? and PO43? were incorporated in the dark at measurable rates most of the year, whereas dark CO2 uptake was always near 0 relative to light uptake. CO2 and NO3? uptake were more strongly influenced by PPFD than was NH43? uptake. The PPFD dependence of PO43?, NH4+, NO3? and CO2 uptake may affect algal growth and nutrient status by influencing the balance in diel and seasonal C:N:P uptake ratios.  相似文献   

19.
Relationships among growth, N accumulation and assimilation were investigated in Chrysanthemum morifolium Ramat cv. Fiesta in experiments testing the effects of varying levels of NO–33supply and of increasing NH+4 added to a constant level of NO–33 Flowing solution culture systems were used to provide NO?3at concentrations of 0.03 to 5.0 mol m–3 and NH+4 levels from 0.05 to 0.3 mmol m–3 added to 0.1 mol m–3NO?3. Rates of growth, N absorption, accumulation, distribution and utilization were estimated by regression analysis of data obtained from sequential plant harvests, and rates of NO?3 and NH?4 net uptake were estimated from solution depletion. A sustained ambient NO?3 concentration of 0.03 mol m–3 was evidently adequate to support growth, since relative growth rates were not affected by increasing NO?3 supply from 0.03 to 1.0 mol m–3, nor from 0.25 to 5.0 mol m–3, in separate experiments. Shoot growth rates were stimulated by NH4 added to NO?3 one experiment, but not when the experiment was repeated under ambient conditions less favorable to growth. Relative accumulation rates for total N increased with increasing NO?3 and with NH+4added to NO?3 A constant proportion of NO?3 taken up was reduced when NO?3 alone was supplied. Both the proportion of total N taken up as NO?3 and the proportion of NO?3 reduced decreased with increasing NH+3 added to NO?3 NH+4 uptake apparently must exceed a threshold of about 30% of the total uptake to inhibit NO?3 uptake. Utilization of N in chrysanthemum was apparently limited by redistribution since relative accumulation rates for total N were equal to or greater than relative growth rates, in contrast to results reported for several other species. Results of this study and other information support the postulate that NH+4 added to NO?3might stimulate growth by increasing transport of reduced N from roots to shoots, thus increasing the supply of reduced N available to support growth of shoot meristems.  相似文献   

20.
The main effects and interactions between light (Io, full incident sunlight to 0.07 Io) and NO3? loading (0.4 to 4.3 mmol · g dry weight?1· d?1) on growth rate, photosynthesis and biochemical constituents of Gracilaria tikvahiae McLachlan were studied using a factorial design experiment in outdoor, continuous-flow seawater cultures. Incipient nitrogen limitation in the low NO3? loading, Io and 0.57 Io treatments occurred after 2.5 weeks of growth under the experimental conditions and resulted in decreased tissue NO3? and R-phycoerythrin. Tissue NO3? and R-phycoerythrin accounted for up to ca. 15 and 20%, respectively, of the total N in G. tikvahiae suggesting a N reserve role for these N pools. Under light and NO3? limitation, growth rate was a parabolic function of the C:N ratio. As light limitation increased, growth rate and the C:N ratio decreased as levels of Chl-a, R-phycoerythrin, percent N and percent protein increased. As NO3? limitation increased, growth rate and levels of Chl-a, R-phycoerythrin, percent N and percent protein all decreased with parallel increases in the C:N ratio. In contrast to the inverse relationship between pigment content and light, ribulose bisphosphate carboxylase (RuBPCase) activity (on both a protein and dry weight basis) varied directly with light. This biochemical acclimation of G. tikvahiae to light and N availability appears to be a process directed towards maximizing photo synthetic capacity and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号