首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The rad6-1 and rad6-3 mutants are highly UV sensitive and show an increase in spontaneous and UV induced mitotic heteroallelic recombination in diploids. Both rad6 mutants are proficient in spontaneous and UV induced unequal sister chromatid recombination in the reiterated ribosomal DNA sequence and are deficient in UV induced mutagenesis. In contrast to the above effects where both mutants appear similar, rad6-1 mutants are deficient in sporulation and meiotic recombination whereas rad6-3 mutants are proficient. The differential effects of these mutations indicate that the RAD6 gene is multifunctional. The possible role of the RAD6 gene in error prone excision repair of UV damage during the G1 phase of the cell cycle in addition to its role in postreplication repair is discussed.  相似文献   

2.
Summary Mutants carrying recF143 or recF144 show wild type levels of host cell reactivation of UV-irradiated vir and wild type rates of excision gap closure in repairing UV damage to their own DNA. The same mutants showed reduced rates of postreplication repair strand joining. When uvrA - recF- or uvrB - recF- strains are tested, postreplication repair strand joining is incomplete or does not occur at fluences above 1 J/m2. We suggest that there may be a UvrAB and a RecF pathway of postreplication repair or that the repair functions controlled or determined by uvrA uvrB and by recF may be similar. An intermediate in postreplication repair may accumulate in the uvr - recF- strain.  相似文献   

3.
Summary Two rad mutants of yeast, rad10 and rad16, are shown to be defective in the removal of UV-induced pyrimidine dimers since DNAs obtained from irradiated cells following a post-irradiation incubation in the dark still retain UV-endonuclease-sensitive sites. Both rad10 and rad16 mutants are in the same pathway of excision-repair as the rad1, rad2, rad3 and rad4 mutants.  相似文献   

4.
Summary The rad3 mutant is characterized by a high level of liquid-holding recovery after DEB treatment. The recovery is abolished when the treated cells are postincubated in growth medium, but the effect can be cancelled by suppression of DNA and protein synthesis by specific inhibitors. Alkaline sucrose gradient sedimentation revealed that DEB induces single strand breaks in DNA which are not repaired during post-treatment incubation in growth medium or during LH. Effective repair takes place only when LH is followed by incubation in growth medium. Splitdose treatment applied to test the possible inducibility of repair by LH did not confirm this presumption.In a diploid homozygous for rad3 mutation, DEB induces mitotic inter- and intragenic recombination with very high frequency. Liquid-holding recovery (LHR) was found to be accompanied by an increase in molecular weight of DNA and by a sharp decrease in the frequency of mitotic recombination. The data suggest that recombination events are not involved in LHR pathway.  相似文献   

5.
Summary Using the Micrococcus luteus dimer specific endonuclease assay of Wilkins (1973), and photoreactivation we have examined the induction and fate of ultraviolet induced pyrimidine dimers in the excision defective strain, uvs-2, of Neurospora crassa.Dimer induction was fluence dependent from 0 to 800 ergs/mm2 UV. An interdimer distance of 19.6x106 DNA molecular weight was found after a fluence of 220 ergs/mm2. We confirm the earlier report that this mutant is completely excision defective (Worthy and Epler 1972). Photoreactivation (PR), which greatly enhanced survival (by 10 fold after 440 ergs/mm2 UV), reduced significantly (40–44%) the number of UV-endonuclease sensitive sites found in irradiated DNA. This treatment also alleviated immediately some of the temporary blocks to high molecular weight DNA synthesis (elongation or ligation) seen in irradiated cells.We have also attempted to elucidate the mechanism of cellular postreplication repair used to overcome the UV inhibition to DNA synthesis. It was determined that during postreplication repair, Neurospora does not use recombination to bypass dimers and that single stranded DNA gaps opposite dimers do not appear to be present during the time when DNA being synthesized is made only in short pieces.  相似文献   

6.
Summary The mutant allele rad9-192 renders Schizosaccharomyces pombe cells sensitive to ionizing radiation and UV light. We have isolated from a S. pombe genomic DNA library a unique recombinant plasmid that is capable of restoring wild-type levels of radioresistance to a rad9 192-containing cell population. Plasmid integration studies using the cloned DNA, coupled with mating and tetrad analyses, indicate that this isolated DNA contains the wild-type rad9 gene. We inactivated the repair function of the cloned fragment by a single insertion of the S. pombe ura4 gene. This nonfunctional fragment was used to create a viable disruption mutant, thus demonstrating that the rad9 gene does not encode an essential cellular function. In addition, the rad9-192 mutant population is as radiosensitive as the disruption mutant, indicating that rad9 gene function is severely if not totally inhibited by the molecular defect responsible for the rad9-192 phenotype. DNA sequence analysis of rad9 reveals an open reading frame of 1,278 bp, interrupted by three introns 53 bp, 57 bp, and 56 by long, respectively, and ending in the termination codon TAG. This gene is capable of encoding a protein of 426 amino acids, with a corresponding calculated molecular weight of 47,464 daltons. No significant homology was detected between the rad9 gene or its deduced protein sequence and sequences previously entered into DNA and protein sequence data banks.  相似文献   

7.
The Saccharomyces cerevisiae gene RHC21 is a homologue of the fission yeast rad21 +gene, which affects the sensitivity of cells to γ-irradiation and is essential for cell growth in S. pombe. Disruption of the RHC21 gene showed that it is also essential in S. cerevisiae. To examine its function in cell growth further, we have isolated temperature-sensitive mutants for the RHC21 gene and characterized one of them, termed rhc21-sk16. When this mutant was incubated at 36° C, the percentage of large-budded cells was increased. Most of the large-budded cells had aberrant nuclear structures, such as unequally extended nuclear DNA with incompletely elongated spindles across the mother-daughter neck or only in a mother cell. Furthermore, a circular minichromosome is more unstable in the mutant than in the wild-type, even at 25° C. Flow cytometry showed that the bulk of DNA replication takes place normally at the restrictive temperature in the mutant. These results indicated that the RHC21 gene is required for proper segregation of the chromosomes. In addition, we found that the mutant is sensitive not only to UV radiation and γ-rays but also to the antimicrotubule agent nocodazole at 25° C. This suggests that the RHC21 gene is involved in the microtubule function. We discuss how the RHC21 gene product may be involved in chromosome segregation and microtubule function. Received: 10 March 1997 / Accepted: 1 September 1997  相似文献   

8.
Summary The mutation prt1-1 with a thermosensitive block in initiation of protein synthesis was introduced into a rad3 strain to study the effect of inhibition of protein synthesis on liquid holding recovery (LHR) from the lethal effects of diepoxybutane (DEB). Liquid holding of the prt1-1rad3 strain under restrictive conditions did not decrease the level of recovery as compared with the permissive temperature. Post-incubation of cells in growth medium under permissive conditions prior to LH resulted in the loss of capacity for LHR, while cells post-incubated under restrictive conditions were fully capable of LHR. The results are interpreted as indicating that protein synthesis during LH is not required for the increase in survival and that the occurrence of protein synthesis prior to liquid holding abolishes the capacity for LHR.  相似文献   

9.
Postreplication repair in Neurospora crassa   总被引:1,自引:0,他引:1  
Summary Changes in the molecular weight of nascent DNA made after ultraviolet (UV) irradiation have been studied in the excision-defective Neurospora mutant uvs-2 using isotopic pulse labeling, alkaline gradient centrifugation and alkaline filter elution. Both the size of nascent DNA and the rate of incorporation of label into DNA was reduced by UV light in a dose dependent manner. However, this DNA repair mutant did recover the ability to synthesize control-like high molecular weight DNA 3 hours after UV treatment, although the rate of DNA synthesis remained depressed after the temporary block to elongation (or ligation) had been overcome. Photoreactivation partially eliminated the depression of DNA synthesis rate and UV light killing of cells, providing strong evidence that the effects on DNA synthesis and killing were caused by pyrimidine cyclobutane dimers. The caffeine inhibition repair studies performed were difficult to quantitate but did suggest either partial inhibition of a single repair pathway or alternate postreplication DNA repair pathways in Neurospora. No enhancement in killing was detected after UV irradiation when cells were grown on caffeine containing plates.  相似文献   

10.
In the accompanying paper we demonstrated that endonuclease III-sensitive sites in theMAT andHML loci ofSaccharomyces cerevisiae are repaired by the Nucleotide Excision Repair (NER) pathway. In the current report we investigated the repair of endonuclease III sites, 6-4 photoproducts and cyclobutane pyrimidine dimers (CPDs) in arad14-2 point mutant and in arad14 deletion mutant. TheRAD14 gene is the yeast homologue of the human gene that complements the defect in cells from xeroderma pigmentosum (XP) patients belonging to complementation group A. In the point mutant we observed normal repair of endonuclease III sites (i.e. as wild type), but no removal of CPDs at theMAT andHML loci. Similar experiments were undertaken using the recently createdrad14 deletion mutant. Here, neither endonuclease III sites nor CPDs were repaired inMAT a orHMR a. Thus the point mutant appears to produce a gene product that permits the repair of endonuclease III sites, but prevents the repair of CPDs. Previously it was found that, in the genome overall, repair of 6-4 photoproducts was less impaired than repair of CPDs in the point mutant. The deletion mutant repairs neither CPDs nor 6-4 photoproducts in the genome overall. This finding is consistent with the RAD14 protein being involved in lesion recognition in yeast. A logical interpretation is that therad14-2 point mutant produces a modified protein that enables the cell to repair endonuclease III sites and 6-4 photoproducts much more efficiently than CPDs. This modified protein may aid studies designed to elucidate the role of the RAD14 protein in lesion recognition.  相似文献   

11.
Summary With the use of neutral sucrose sedimentation techniques, the size of unirradiated nuclear DNA and the repair of double-strand breaks induced in it by ionizing radiation have been determined in both wild-type and homozygous rad52 diploids of the yeast Saccharomyces cerevisiae. The number average molecular weight of unirradiated DNA in these experiments is 3.0×108±0.3 Daltons. Double-strand breaks are induced with a frequency of 0.58×10-10 per Daltonkrad in the range of 25 to 100 krad. Since repair at low doses is observed in wild-type but not homozygous rad52 strains, the corresponding rad52 gene product is concluded to have a role in the repair process. Cycloheximide was also observed to inhibit repair to a limited extent indicating a requirement for protein synthesis. Based on the sensitivity of various mutants and the induction frequency of double-strand breaks, it is concluded that there are 1 to 2 double-strand breaks per lethal event in diploid cells incapable of repairing these breaks.  相似文献   

12.
Summary We studied the repair of double-strand breaks (DSB) in plasmid DNA introduced into haploid cells of the yeast Saccharomyces cerevisiae. The efficiency of repair was estimated from the frequency of transformation of the cells by an autonomously replicated linearized plasmid. The frequency of lithium transformation of Rad+ cells was increased greatly (by 1 order of magnitude and more) compared with that for circular DNA if the plasmid was initially linearized at the XhoI site within the LYS2 gene. This effect is due to recombinational repair of the plasmid DNA. Mutations rad52, rad53, rad54 and rad57 suppress the repair of DSB in plasmid DNA. The kinetics of DSB repair in plasmid DNA are biphasic: the first phase is completed within 1 h and the second within 14–18 h of incubating cells on selective medium.  相似文献   

13.
Summary Host cell reactivation and UV reactivation and mutagenesis of UV-irradiated phage were measured in tsl recA + and tsl recA host mutants. Host cell reactivation was slightly more efficient in the tsl recA strain compared to the tsl + recA strain. Phage was UV-reactivated in the tsl recA strain with about one-half the efficiency of that in the wild type strain, but there was no corresponding mutagenesis of phage. UV-reactivation was also slightly lower and mutagenesis several-fold lower than normal in the tsl recA + strain. To account for these observations, we propose that there is an inducible, error-free pathway of DNA repair in E. coli that competes with error-prone repair for repair of phage lesions.  相似文献   

14.
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage; therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of -galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.  相似文献   

15.
Summary The frequency of intra- and interchromosomal recombination was determined in RAD18 and rad18 deletion and rad18-3 mutant strains. It was found that spontaneous interchromosomal recombination at trp5, his1, ade2, and MAT was elevated 10- to 70-fold in the rad18-3 and rad18 mutants as compared to the RAD + strains. On the other hand the frequencies of spontaneous intrachromosomal recombination for the his33, his35 and the his4C , his4A duplications and for heterothallic mating type switching were only marginally elevated in the rad18 deletion mutant, and recombination between ribosomal DNA repeats was only 2-fold elevated in the rad18-3 mutant. These differences may be due to a haploid versus diploid specific difference. However interchromosomal recombination was elevated 40-fold and intrachromosomal recombination was only marginally (1.5-fold) elevated in a diploid homozygous for rad18, arguing against a haploid versus diploid specific difference. Possible explanations for the difference in the elevated levels of intra- versus interchromosomal spontaneous recombination are discussed.  相似文献   

16.
The capacity of the mesophilic archaeon, Methanosarcina barkeri (DSM 804) for DNA double strand break repair following60Co- γ irradiation was investigated. The genome (1.9 Mb) of Methanosarcina barkeri was largely fragmented and was found to be repaired on incubation in medium under anaerobic conditions at 37°C for 4 h. To get an insight into its repair process a set of inhibitors were used. The methanogenesis inhibitor, bromoethanesulfonate showed partial inhibition of repair in Methanosarcina barkeri but not in Escherichia coli or human peripheral blood mononuclear cells. The Methanosarcina barkeri cells could also partially repair the DNA damage in a non-nutrient medium. Arabinosine-CTP, a nucleoside analogue and a polymerase inhibitor, completely inhibited repair in this archaeon. Arabinosine-CTP did not affect DSB (double-strand break) repair in human peripheral blood mononuclear cells but completely inhibited repair in Escherichia coli (a bacterium). The involvement of polymerase indicates recombination to be the underlying mechanism in DSB repair of Methanosarcina barkeri. 3-Aminobenzamide, a poly (ADP-ribose) polymerase inhibitor, completely inhibited repair in this archaeon as well as in eukarya but not in Escherichia coli showing the involvement of poly (ADP-ribose) polymerase in the DSB repair of Methanosarcina barkeri.  相似文献   

17.
Summary In Saccharomyces cerevisiae, a protein was recognized by polyclonal antibodies raised against homogeneous Escherichia coli K12 RecA protein. The cellular level of the yeast protein called RecAsc (molecular weight 44 kDa, pI 6.3), was transiently enhanced after UV irradiation. Protease inhibitors were required to minimize degradation of the RecAsc protein during cell lysis. The RecAsc protein exhibited similar basal levels and similar kinetics of increase after UV irradiation in DNA-repair proficient (RAD +) strains carrying mitochondrial DNA or not (rho 0). This was also true for the following DNA-repair deficient (rad -) strains: rad2-6 rad6-1 rad52-1, a triple mutant blocked in three major repair pathways; rad6-, a mutant containing an integrative deletion in a gene playing a central role in mutagenesis; pso2-1, a mutant that exhibits a reduced rate of mutagenesis and recombination after exposure to DNA cross-linking agents.  相似文献   

18.
The mei-41 gene of Drosophila melanogaster plays an essential role in meiosis, in the maintenance of somatic chromosome stability, in postreplication repair and in DNA double-strand break repair. This gene has been cytogenetically localized to polytene chromosome bands 14C4-6 using available chromosomal aberrations. About 60 kb of DNA sequence has been isolated following a bidirectional chromosomal walk that extends over the cytogenetic interval 14C1-6. The breakpoints of chromosomal aberrations identified within that walk establish that the entire mei-41 gene has been cloned. Two independently derived mei-41 mutants have been shown to carry P insertions within a single 2.2 kb fragment of the walk. Since revertants of those mutants have lost the P element sequences, an essential region of the mei-41 gene is present in that fragment. A 10.5 kb genomic fragment that spans the P insertion sites has been found to restore methyl methanesulfonate resistance and female fertility of the mei-41 D3 mutants. The results demonstrate that all the sequences required for the proper expression of the mei-41 gene are present on this genomic fragment. This study provides the foundation for molecular analysis of a function that is essential for chromosome stability in both the germline and somatic cells.This Paper is dedicated to the memory of Professor James B. Boyd  相似文献   

19.
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methane-sulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT TA than GC TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis. We propose that the type of misincorporation/chain extension which DNA polymerase III is allowed to synthesize on a damaged DNA template is extremely sensitive to both the amount and type of error-prone repair proteins present. The modulation of these events by the different proteins can result in widely different mutagenic changes in the repaired DNA.  相似文献   

20.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号