首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A precise packaging of the paternal genome during spermiogenesis is essential for fertilization and embryogenesis. Most of the nucleosomal DNA supercoiling must be eliminated in elongating spermatids (ES), and transient DNA strand breaks are observed that facilitate the process. Topoisomerases have been considered as ideal candidates for the removal of DNA supercoiling, but their catalytic activity, in the context of such a major chromatin remodeling, entails genetic risks. Using immunofluorescence, we confirmed that topoisomerase II beta (TOP2B) is the type II topoisomerase present in ES between steps 9 and 13. Interestingly, the detection of TOP2B was found coincident with detection of tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme known to resolve topoisomerase-mediated DNA damage. The presence of gamma-H2AX (also known as H2AFX) coincident with DNA strand breakage was also confirmed at these steps and indicates that a DNA damage response is triggered. Active DNA repair in ES was demonstrated using a fluorescent in situ DNA polymerase activity assay on squash preparations of staged tubules. In the context of haploid spermatids, any unresolved double-strand breaks, resulting from a failure in the rejoining process of TOP2B, must likely rely on the error-prone nonhomologous end joining, because homologous recombination cannot proceed in the absence of a sister chromatid. Because this process is part of the normal developmental program of the spermatids, dramatic consequences for the genomic integrity of the developing male gamete may arise should any alteration in the process occur.  相似文献   

2.
Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.  相似文献   

3.
Hiom K 《DNA Repair》2010,9(12):1256-1263
The repair of DNA double strand breaks (dsb) is important for maintaining the physical and genetic integrity of the genome. Moreover, in humans it is associated with the prevention of diseases such as immune deficiencies and cancer. This review briefly explores the fundamental strategies for repairing dsb, examines how cells maximize the fidelity of dsb repair in the cell cycle and discusses the requirements for dsb repair in the context of chromatin.  相似文献   

4.
We have previously shown that human cancer cells deficient in DNA mismatch repair (MMR) are resistant to the chemotherapeutic methylating agent temozolomide (TMZ) and can be sensitized by the base excision repair (BER) blocking agent methoxyamine (MX) [21]. To further characterize BER-mediated repair responses to methylating agent-induced DNA damage, we have now evaluated the effect of MX on TMZ-induced DNA single strand breaks (SSB) by alkaline elution and DNA double strand breaks (DSB) by pulsed field gel electrophoresis in SW480 (O6-alkylguanine-DNA-alkyltransferase [AGT]+, MMR wild type) and HCT116 (AGT+, MMR deficient) colon cancer cells. SSB were evident in both cell lines after a 2-h exposure to equitoxic doses of temozolomide. MX significantly increased the number of TMZ-induced DNA-SSB in both cell lines. In contrast to SSB, TMZ-induced DNA-DSB were dependent on MMR status and were time-dependent. Levels of 50 kb double stranded DNA fragments in MMR proficient cells were increased after TMZ alone or in combination with O6-benzylguanine or MX, whereas, in MMR deficient HCT116 cells, only TMZ plus MX produced significant levels of DNA-DSB. Levels of AP endonuclease, XRCC1 and polymerase beta were present in both cell lines and were not significantly altered after MX and TMZ. However, cleavage of a 30-mer double strand substrate by SW480 and HCT116 crude cell extracts was inhibited by MX plus TMZ. Thus, MX potentiation of TMZ cytotoxicity may be explained by the persistence of apurinic/apyrimidinic (AP) sites not further processed due to the presence of MX. Furthermore, in MMR-deficient, TMZ-resistant HCT116 colon cancer cells, MX potentiates TMZ cytotoxicity through formation of large DS-DNA fragmentation and subsequent apoptotic signalling.  相似文献   

5.
Increased lymphocyte DNA strand breaks in rubber workers   总被引:10,自引:0,他引:10  
Zhu CQ  Lam TH  Jiang CQ  Wei BX  Xu QR  Chen YH 《Mutation research》2000,470(2):201-209
OBJECTIVE: To study the effect of occupational exposure to rubber processing, smoking, and alcohol drinking on lymphocyte DNA damage. SUBJECTS AND METHODS: Of 371 employees (197 men and 174 women) from a rubber factory in Guangzhou, 281 were rubber processing workers from five production sections and 90 were managerial workers. Information on occupational exposure, smoking, and drinking was collected by interviews. Blood samples were taken in the morning by venipuncture. DNA damages were measured by the Comet assay. Possible DNA-protein crosslinks were broken down by proteinase K. Tail moment, measured by Komet 4.0 image analysis software, was the measure of DNA damage. RESULTS: The rubber processing workers had larger tail moment than the managerial workers (Geometric mean, 95%CI) [1. 77microm (1.64-1.90) versus 1.52microm (1.36-1.71), P=0.04]. Both smoking [1.93microm (1.74-2.13) versus 1.59microm (1.47-1.71), P=0. 003] and alcohol drinking [2.21microm (1.87-2.62) versus 1.63microm (1.53-1.74), P<0.001] increased tail moment. Tail moment differed significantly among job categories (F=3.21, P=0.008), the largest was observed in mixers. In the non-smoking and non-drinking workers, rubber processing workers had larger tail moment than managerial workers after adjusting for age (P=0.033). General linear model analysis showed that after adjusting for each other, occupational exposure (P=0.027), smoking (P=0.012), and alcohol drinking (P=0. 013) was associated with larger tail moment, whereas age and gender had no effect. CONCLUSIONS: Occupational exposure to rubber processing, smoking, and alcohol drinking can cause DNA damage.  相似文献   

6.
Objective: To study the effect of occupational exposure to rubber processing, smoking, and alcohol drinking on lymphocyte DNA damage. Subjects and Methods: Of 371 employees (197 men and 174 women) from a rubber factory in Guangzhou, 281 were rubber processing workers from five production sections and 90 were managerial workers. Information on occupational exposure, smoking, and drinking was collected by interviews. Blood samples were taken in the morning by venipuncture. DNA damages were measured by the Comet assay. Possible DNA-protein crosslinks were broken down by proteinase K. Tail moment, measured by Komet 4.0 image analysis software, was the measure of DNA damage. Results: The rubber processing workers had larger tail moment than the managerial workers (Geometric mean, 95%CI) [1.77 μm (1.64–1.90) versus 1.52 μm (1.36–1.71), P=0.04]. Both smoking [1.93 μm (1.74–2.13) versus 1.59 μm (1.47–1.71), P=0.003] and alcohol drinking [2.21 μm (1.87–2.62) versus 1.63 μm (1.53–1.74), P<0.001] increased tail moment. Tail moment differed significantly among job categories (F=3.21, P=0.008), the largest was observed in mixers. In the non-smoking and non-drinking workers, rubber processing workers had larger tail moment than managerial workers after adjusting for age (P=0.033). General linear model analysis showed that after adjusting for each other, occupational exposure (P=0.027), smoking (P=0.012), and alcohol drinking (P=0.013) was associated with larger tail moment, whereas age and gender had no effect. Conclusions: Occupational exposure to rubber processing, smoking, and alcohol drinking can cause DNA damage.  相似文献   

7.
Synthetic eumelanin prepared by autooxidation of D,L-DOPA causes DNA strand breaks, as determined by alkaline elution after cell lysis with detergent and proteolysis, in B16CL4 mouse melanoma cells. The melanin is toxic to the cells in the range of doses that causes strand breaks. When the melanin was incubated with the cells at 37 degrees C in tissue culture medium, it was maximally effective after 15 to 20 min at causing strand breaks in the DNA. The extent of damage is concentration dependent, but the effect plateaus at 1 mg/ml. The nature of the interaction of the cellular DNA with melanin is consistent with strand breaks, not DNA-DNA crosslinks. The strand break damage is repaired, even in the continued presence of melanin, but repair is more rapid if the cells are washed and the melanin is removed. The form of the melanin is important for obtaining the effect. Sonication for 3 min abrogates the effect to a considerable extent, and repeated cycles of sonication can completely destroy the activity. Lost activity returns slowly with storage at 4 degrees C. Melanin is more effective at damaging DNA in a protein-free medium. It is also DNA-damaging at 4 degrees C, but less so than at 37 degrees C. Preliminary studies indicate that the strand breaks caused by melanin are additive with those caused by ionizing radiation. The extent of DNA strand breaks and alkali-labile sites caused by several other melanins was also determined. Some melanins did not cause frank strand breaks, but were active in causing alkali-labile sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.Key words: p400, chromatin remodeling, DNA repair, NuA4, H2AX, acetylation, nucleosome, tip60Damage to cellular DNA can occur through multiple pathways, including exposure to genotoxic agents, the production of endogenous reactive oxygen species or errors which arise during DNA replication. To combat this continuous assault on the genome, mammalian cells have evolved multiple DNA repair pathways. The most challenging lesions to repair are DSBs, which physically cleave the DNA strand. DSBs can occur through exposure to IR, the collapse of replication forks or during the processing of certain types of DNA damage. Over the last 20 years, a clear picture of how the cell detects and repairs DSBs has emerged.1,2 The earliest event in the cell''s response to DSBs is the rapid recruitment of the ATM kinase, followed by the phosphorylation of histone H2AX (termed γH2AX) on large chromatin domains which extend for 100''s of kilobases on either side of the DSB.3 The mdc1 scaffold protein is then recruited to γH2AX,4 providing a docking platform for the recruitment and retention of additional DNA repair proteins, including the MRN complex, the RNF8 ubiquitin ligase and the brca1 and 53BP1 proteins, onto the chromatin at DSBs.57 Eventually, this spreading of DNA repair proteins along the chromatin from the DSB leads to the formation of IRIF, which can be visualized by immunofluorescent techniques. DSBs are then repaired by NHEJ, in which broken DNA ends are directly religated, or by HR, using the undamaged sister chromatid (present during S-phase) as a template. A defining characteristic of DSB repair is the dominant role that chromatin structure plays in the detection and repair of these lesions. In this review, we will examine recent work exploring how remodeling of the chromatin structure adjacent to DSBs plays a key role in the repair of DSBs.  相似文献   

9.
10.
11.
12.
Alkaline sucrose gradient sedimentation was used to establish whether strand breakage and repair take place in the DNA of UV-irradiated Bacteroides fragilis during the removal of pyrimidine dimers. A B. fragilis wild-type strain and two of its repair mutants, a mitomycin C sensitive mutant (MTC25) having wild-type levels of UV survival, and a UV-sensitive, mitomycin C sensitive mutant (UVS9), were investigated. Under anaerobic conditions, far-UV irradiation induced metabolically regulated strand breakage and resynthesis in the wild-type strain, but this was markedly reduced in both the MTC25 and UVS9 mutants. Approximately half of the strand breaks generated by the various strains were rejoined during further holding in buffer. Under replicating conditions, complete repair of strand breaks in the wild type was observed. Caffeine treatment under anaerobic conditions caused direct DNA strand breakage in B. fragilis cells but did not inhibit UV-induced breakage or repair.  相似文献   

13.
DNA single strand breaks (ssb) have been induced in FLC/C cells in culture. They have been visualized in the electron microscope after decoration with biotin-avidin-ferritin complexes and spreading as monomolecular mixed films. This allowed one to determine the average number of decorated ssbs per unit of DNA length applying straight-forward and simple evaluation methods. This method has been used to investigate the DNA alterations by benzo[a]pyrene (B[a]P) on FLC/C culture cells. Thus a B[a]P-DNA damage curve can be constructed as a regression with a correlation coefficient of r = 0.97, while its isomer benzo[e]pyrene (B[e]P) known to have only low mutagenicity under the same experimental conditions is virtually without effect. The method has further informational potential regarding damage distribution and repair of DNA.  相似文献   

14.
Formation of strand breaks in the DNA ofγ-irradiated chromatin   总被引:1,自引:0,他引:1  
Summary Strand breaks have been determined by sedimentation on sucrose gradients in the DNA of chromatin irradiated after isolation from Chinese hamster lung fibroblasts. The yields of double-strand and single-strand breaks are similar to those found in the DNA of irradiated mammalian cells. Irradiation of isolated chromatin in the presence of the radical scavenger tertiary butanol indicates that at least 65% of single-strand breaks and 56% of double-strand breaks can be attributed to the action of hydroxyl radicals. The results indicate the influence of chromosomal proteins in modifying radiation damage to DNA and suggest that the mechanisms for the induction of strand breaks in the DNA of isolated chromatin may be comparable to those operating in the intact cell.  相似文献   

15.
16.
17.
DNA damage induced by administration of dimethylarsinic acid (DMAA) to rats and mice was investigated. At 12 h after administration of DMAA, DNA single-strand breaks were induced markedly in lung. The majority of dimethylarsine, one of the main metabolites, in the expired air was excreted within 6–18 h after administration of DMAA to rats. In vitro experiments using nuclei isolated from lung of mice indicated that DNA strand breaks were caused by dimethylarsine. Furthermore, the strand breaks after exposure to dimethylarsine were reduced in the presence of catalase and/or superoxide dismutase. These results strongly suggest that the strand breaks are induced not by dimethylarsine itself but by active oxygen, e.g., O 2 ? and ·OH, produced both by dimethylarsine and molecular oxygen. When DNA was exposed to dimethylarsine, thiobarbituric acid (TBA)-reactive intermediates andcis-thymine glycol were produced. Dimethylarsine appears to induce DNA damage by the mechanism similar to the damage produced by ionizing radiation.  相似文献   

18.
19.
Chromosomal aberrations induced by double strand DNA breaks   总被引:4,自引:0,他引:4  
Varga T  Aplan PD 《DNA Repair》2005,4(9):1038-1046
It has been suggested that introduction of double strand DNA breaks (DSBs) into mammalian chromosomes can lead to gross chromosomal rearrangements through improper DNA repair. To study this phenomenon, we employed a model system in which a double strand DNA break can be produced in human cells in vivo at a predetermined location. The ensuing chromosomal changes flanking the breakage site can then be cloned and characterized. In this system, the recognition site for the I-SceI endonuclease, whose 18 bp recognition sequence is not normally found in the human genome, is placed between a strong constitutive promoter and the Herpes simplex virus thymidine kinase (HSV-tk) gene, which serves as a negative selectable marker. We found that the most common mutation following aberrant DSB repair was an interstitial deletion; these deletions typically showed features of non-homologous end joining (NHEJ), such as microhomologies and insertions of direct or inverted repeat sequences. We also detected more complex rearrangements, including large insertions from adjacent or distant genomic regions. The insertion events that involved distant genomic regions typically represented transcribed sequences, and included both L1 LINE elements and sequences known to be involved in genomic rearrangements. This type of aberrant repair could potentially lead to gene inactivation via deletion of coding or regulatory sequences, or production of oncogenic fusion genes via insertion of coding sequences.  相似文献   

20.
The DNA unwinding method was used to estimate DNA breakage in Chinese hamster cells exposed to heavy ions with LET in the range of 750-5000 keV/micron. Comparison of the primary induced unwinding rate per dose unit for ions with various track diameters but similar LET showed a pronounced influence on the track diameter. Low-energy ions, producing thin tracks with diameters (penumbra) in the submicrometer region, were almost two orders of magnitude less efficient than more energetic ions producing tracks with diameters of several micrometers and about three orders of magnitude less efficient than X-rays. For the thin tracks, clustering of breaks was indicated by comparison of the DNA unwinding rates in two different alkaline solutions. The results indicate that the unwinding rate cannot be used as a good measurement for DNA breaks in this case. The residual unwinding remaining after 4 h of repair at 37 degrees C correlated well with the ability of the various ions to produce cell-killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号